Nuclease p1: A new biocatalyst for direct asymmetric aldol reaction under solvent-free conditions

Hai-Hong Li[§], Yan-Hong He[§], Yi Yuan and Zhi Guan *

School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China Fax: +86-23-68254091; e-mail: guanzhi@swu.edu.cn

(Supporting Information)

General method: ¹H NMR spectra were recorded on 300 MHz spectrometer. Chemical shifts are expressed in ppm with TMS as internal standard, and coupling constants are reported in Hz. Routine monitoring of reaction was performed by TLC using precoated Haiyang GF254 silica gel TLC plates. All the column chromatography separations were done by using silica gel (100-200 mesh) at increased pressure. Petroleum ether used was of boiling range 60-80 °C. The organic extracts were dried over anhydrous sodium sulfate. Evaporation of solvent was performed at reduced pressure. The enantiomeric excess (ee) of aldol products was determined by chiral HPLC analysis, performed using Chiralcel AD-H, OD-H, AS-H and OJ-H columns. Relative and absolute configurations of the products were determined by comparison with the known ¹H NMR and chiral HPLC analysis. Aldol adducts 3a,^[1,2] 3b,^[1] 3c,^[1] 3d,^[4,5] 3e,^[5] 3f,^[1] 3g,^[4] 3h,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3i,^[1] 3m,^[1] 3m,^[1] 3m,^[5] and 3o^[3] are all known compounds.

Materials: Nuclease P1 from *Penicillium citrinum* (EC 3.1.30.1, 5 U/mg. The activity determination was according to the procedure described by Fujishima *et al.* ^[6]. The activity was measured in terms of the amount of acid-soluble nucleotides produced by RNA hydrolysis which is catalyzed by nuclease p1. One unit of enzyme activity was defined as the amount of enzyme that produced an increase in the optical density of 1.0 in 1 min at 260 nm.) was purchased from Guangxi Nanning Pangbo Biological Engineering Co. Ltd. (Nanning, China). Unless otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification.

¹HNMR and HPLC spectra data of aldol products

(2S, 1'R)-2-(Hydroxy-(p-tolyl)methyl)cyclohexan-1-one 3a^[1,2]

¹H NMR (300 MHz, CDCl₃): δ 7.17 (4H, m), 4.75 (1H, d, J = 8.7 Hz), 3.94 (1H, brs), 2.65-2.52 (1H, m), 2.49-2.48 (1H, m), 2.44-2.42 (1H, m), 2.33 (3H, s), 2.10-2.04 (1H, m), 1.79-1.73 (1H, m), 1.64-1.48 (3H, m), 1.34-1.22 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 0.5 ml/min; major enantiomer tr = 28.2 min, minor enantiomer tr = 30.1 min.

(2S, 1'R)-2-(Hydroxy(phenyl)methyl)cyclohexan-1-one 3b^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.25 (5H, brs), 4.72 (1H, d, J = 7.5 Hz), 3.90 (1H, brs), 2.53-2.51 (1H, m), 2.37-2.25 (2H, m), 2.10-1.97 (1H, m), 1.79-1.75 (1H, m), 1.67-1.57 (3H, m), 1.34-1.18 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 0.5 ml/min; major enantiomer tr = 17.7 min, minor enantiomer tr = 22.5 min.

(2S, 1'R)-2-(Hydroxy-(p-chlorophenyl)methyl)cyclohexan-1-one 3c^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.28 (4H, m), 4.76 (1H, d, J = 8.5 Hz), 4.01 (1H, d, J = 2.2 Hz), 2.60-2.45 (2H, m), 2.42-2.31 (1H, m), 2.12-2.06 (1H, m), 1.82-1.77 (1H, m), 1.73-1.52 (3H, m), 1.35-1.21 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 1.0 ml/min; major enantiomer tr = 16.1 min, minor enantiomer tr = 14.1 min.

(2S, 1'R)-2-(Hydroxy-(o-chlorophenyl)methyl)cyclohexan-1-one 3d^[4,5]

¹H NMR (300 MHz, CDCl₃): δ 7.55 (1H, d, J = 7.2 Hz), 7.34-7.18 (3H, m), 5.35 (1H, d, J = 6.7 Hz), 4.06 (1H, brs), 2.84-2.64 (1H, m), 2.49-2.29 (2H, m), 2.10-2.07 (1H, m), 1.83-1.74 (1H, m), 1.70-1.55 (4H, m). Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (95:5 hexane:2-propanol), 25 °C, 220 nm, 0.8 ml/min; major enantiomer tr = 18.2 min, minor enantiomer tr = 21.2 min.

(2S, 1'R)-2-(Hydroxy-(*m*-chlorophenyl)methyl)cyclohexan-1-one 3e^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.34 (1H, s), 7.26 (2H, d, J = 6.0 Hz), 7.19 (1H, d, J = 4.4 Hz), 4.76 (1H, d, J = 8.4 Hz), 4.02 (1H, brs), 2.61-2.51 (1H, m), 2.46-2.41 (1H, m), 2.39-2.30 (1H, m), 2.12-2.08 (1H, m), 1.88-1.79 (1H, m), 1.72-1.69 (1H, m), 1.64-1.53 (2H, m), 1.37-1.25 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (95:5 hexane:2-propanol), 25 °C, 220 nm, 1.0 ml/min; major enantiomer tr = 11.1 min, minor enantiomer tr = 13.5 min.

(2S, 1'R)-2-(Hydroxy-(2,4-dichlorophenyl)methyl)cyclohexan-1-one 3f^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.50 (1H, d, J = 8.4 Hz), 7.35 (1H, s), 7.29 (1H, d, J = 8.5 Hz), 5.29 (1H, dd, J = 7.0, 2.1 Hz), 4.06 (1H, d, J = 3.8 Hz), 2.67-2.58 (1H, m), 2.48-2.27 (2H, m), 2.12-2.08 (1H, m), 1.85-1.83 (1H, m), 1.72-1.52 (4H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AS –H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 0.5 ml/min; major enantiomer tr = 20.1 min, minor enantiomer tr = 16.9 min.

(2S, 1'R)-2-(Hydroxy-(2,6-dichlorophenyl)methyl)cyclohexan-1-one 3g^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.31 (2H, d, *J* = 8.1 Hz), 7.15 (1H, t, *J* = 8.0 Hz), 5.84 (1H, d, *J* = 9.7 Hz),

3.70 (1H, brs), 3.54-3.45 (1H, m), 2.54-2.26 (2H, m), 2.12-2.05 (1H, m), 1.84-1.24 (5H, m). Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (95:5 hexane:2-propanol), 25 °C, 220 nm, 1.0 ml/min; major enantiomer tr = 11.1 min, minor enantiomer tr = 9.7 min.

(2S, 1'R)-2-(Hydroxy-(p-bromophenyl)methyl)cyclohexan-1-one 3h^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.47 (2H, d, J = 7.9 Hz), 7.20 (2H, d, J = 7.7 Hz), 4.75 (1H, d, J = 8.5 Hz), 3.99 (1H, brs), 2.58-2.32 (3H, m), 2.11-2.07 (1H, m), 1.87-1.52 (4H, m), 1.35-1.23 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 1.0 ml/min; major enantiomer tr = 17.5 min, minor enantiomer tr = 15.1 min.

(2S, 1'R)-2-(Hydroxy-(p-cyanophenyl)methyl)cyclohexan-1-one 3i^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.65 (2H, d, J = 7.8 Hz), 7.45 (2H, d, J = 7.7 Hz), 4.84 (1H, d, J = 7.0 Hz), 4.07 (1H, d, J = 2.1 Hz), 2.62-2.47 (2H, m), 2.42-2.31 (1H, m), 2.14-2.09 (1H, m), 1.88-1.81 (1H, m), 1.74-1.54 (3H, m), 1.45-1.29 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD –H column (9:1 hexane:2-propanol), 25 °C, 254 nm, 0.5 ml/min; major enantiomer tr = 68.2 min, minor enantiomer tr = 53.9 min.

(2S,1'R)-2-(Hydroxy-(p-(trifluoromethyl)phenyl)methyl)cyclohexan-1-one 3j^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.61 (2H, d, J = 7.7 Hz), 7.45 (2H, d, J = 7.7 Hz), 4.85 (1H, d, J = 8.3 Hz), 4.05 (1H, brs), 2.64-2.55 (1H, m), 2.52-2.47 (1H, m), 2.42-2.31 (1H, m), 2.13-2.09 (1H, m), 1.84-1.80 (1H, m), 1.69-1.54 (3H, m), 1.40-1.26 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 25 °C, 254 nm, 1.0 ml/min; major enantiomer tr = 25.9 min, minor enantiomer tr = 21.3 min.

(2S, 1'R)-2-(Hydroxy-(o-nitrophenyl)methyl)cyclohexan-1-one 3k^[1]

¹H NMR (300 MHz, CDCl₃): δ 7.85 (1H, d, J = 8.3 Hz), 7.77 (1H, d, J = 7.9 Hz), 7.64 (1H, t, J = 7.4 Hz), 7.43 (1H, t, J = 7.7 Hz), 5.45 (1H, d, J = 7.1 Hz), 4.12 (1H, d, J = 6.9 Hz), 2.80-2.72 (1H, m), 2.48-2.29 (2H, m), 2.13-2.03 (1H, m), 1.87-1.56 (5H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 hexane:2-propanol), 25 °C, 254 nm, 0.5 ml/min; major enantiomer tr = 80.0 min, minor enantiomer tr = 87.2 min.

(2S, 1'R)-2-(Hydroxy-(*m*-nitrophenyl)methyl)cyclohexan-1-one 3l^[1,3]

¹H NMR (300 MHz, CDCl₃): δ 8.21 (1H, s), 8.17 (1H, d, J = 8.3 Hz), 7.68 (1H, d, J = 7.5 Hz), 7.53 (1H, t, J = 8.1 Hz), 4.90 (1H, d, J = 8.3 Hz), 4.13 (1H, brs), 2.67-2.59 (1H, m), 2.53-2.49 (1H, m), 2.43-2.32 (1H, m), 2.17-2.10 (1H, m), 1.85-1.82 (1H, m), 1.73-1.55 (3H, m), 1.45-1.32 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (95:5 hexane:2-propanol), 25 °C, 254 nm, 0.5 ml/min; major enantiomer tr = 102.8 min, minor enantiomer tr = 100.2 min.

(2S, 1'R)-2-(Hydroxy-(p-nitrophenyl)methyl)cyclopentan-1-one 3m^[1]

¹H NMR (300 MHz, CDCl₃): δ 8.22 (2H, d, J = 8.1 Hz), 7.54 (2H, d, J = 8.0 Hz), 4.86 (1H, d, J = 9.1 Hz), 4.77 (1H, brs), 2.52-2.16 (3H, m), 2.10-1.94 (1H, m), 1.84-1.69 (2H, m), 1.63-1.48 (1H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 hexane:2-propanol), 25 °C, 254 nm, 0.5 ml/min; (anti) major enantiomer tr = 100.4 min, minor enantiomer tr = 97.3 min; (syn) major enantiomer tr = 53.9 min, minor enantiomer tr = 74.2 min.

(2S, 1'R)-2-(Hydroxy-(p-cyanophenyl)methyl)cyclopentan-1-one 3n^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.64 (2H, d, J = 8.1 Hz), 7.47 (2H, d, J = 8.0 Hz), 4.80 (1H, d, J = 8.9 Hz), 4.74 (1H, s), 2.50-2.39 (1H, m), 2.35-2.12 (2H, m), 2.08-1.91 (2H, m), 1.74-1.68 (2H, m). Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (9:1 hexane:2-propanol), 25 °C, 220 nm, 1.0 ml/min; (anti) major enantiomer tr = 40.8 min, minor enantiomer tr = 46.3 min; (syn) major enantiomer tr = 13.7 min, minor enantiomer tr = 17.5 min.

(2S, 1'R)-2-(Hydroxy-(p-nitrophenyl)methyl)cycloheptan-1-one 30^[3]

¹H NMR (300 MHz, CDCl₃): δ 8.21 (2H, d, J = 8.3 Hz), 7.53 (2H, d, J = 8.3 Hz), 4.93 (1H, s), 3.71 (1H, brs), 3.01-2.85 (1H, m), 2.67-2.42 (2H, m), 1.89-1.60 (4H, m), 1.50-1.22 (4H, m). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 25 °C, 254 nm, 0.5 ml/min; major enantiomer tr = 102.2 min, minor enantiomer tr = 43.2 min.

		o () _n +	H R -	nuclease p1 15 °C	$- \underbrace{)_{n}^{O}}_{n} \xrightarrow{O}_{n} $
	D	1	2 Due du et	11	3 NIMD (CHOID [annu]
Entry	\mathbf{K}_1	n	Product	Е	INMR (-C <u>H</u> OH) [ppm]
				syn	anti
1	4-Me-C ₆ H ₄ -	2	3a	5.34 (brs)	4.75 (d, J = 8.7 Hz)
2	C ₆ H ₄ -	2	3b	5.32 (brs)	4.72 (d, J = 7.5 Hz)
3	$4-Cl-C_6H_4-$	2	3c	5.35 (brs)	4.76 (d, J = 8.5 Hz)
4	2-Cl-C ₆ H ₄ -	2	3d	5.48 (brs)	4.90 (dd, <i>J</i> = 8.5, 2.8 Hz)
5	3-Cl-C ₆ H ₄ -	2	3e	5.36 (brs)	4.76 (d, J = 8.4 Hz)
6	2,4-Cl ₂ -C ₆ H ₃ -	2	3f	5.65 (brs)	5.29 (dd, <i>J</i> = 7.0, 2.1 Hz)
7	2,6-Cl ₂ -C ₆ H ₃ -	2	3g	6.20 (brs)	5.84 (d, J = 9.7 Hz)
8	$4-Br-C_6H_4-$	2	3h	5.34 (brs)	4.75 (d, <i>J</i> = 8.5 Hz)
9	4-CN-C ₆ H ₄ -	2	3i	5.43 (brs)	4.84 (d, J = 7.0 Hz)
10	$4-CF_3-C_6H_4-$	2	3j	5.45 (brs)	4.85 (d, J = 8.3 Hz)
11	2-NO ₂ -C ₆ H ₄ -	2	3k	5.96 (brs)	5.45 (d, <i>J</i> = 7.1 Hz)
12	3-NO ₂ -C ₆ H ₄ -	2	31	5.48 (brs)	4.90 (d, J = 8.3 Hz)
13	$4-NO_2-C_6H_4-$	1	3m	5.42 (brs)	4.86 (d, J = 9.1 Hz)
14	4-CN-C ₆ H ₄ -	1	3n	5.36 (brs)	4.80 (d, J = 8.9 Hz)
15	4-NO ₂ -C ₆ H ₄ -	3	30	5.31 (brs)	4.93 (s)

List of the obvious difference between syn-3 and anti-3 on ¹H NMR^[3]

¹HNMR spectra for aldol products 3a-3o

7

11

HPLC spectra for aldol products 3a-3o

		DEFAULT	REPORT		
Peak #	Time [min]	Area [µv.s]	Height [µv]	Area [%]	
1	28.181	28931374	818377	99.83285	
2	30.060	48439	4020	0.16715	

3b (Racemic)

3c (Racemic)

DEFAULT REPORT						
Peak #	Time [min]	Area [µv.s]	Height [µv]	Area [%]		
1	14.084	739177	39537	4.64978		
2	16.112	15157865	689339	95.35022		

3e (Racemic)

3f (Racemic)

3f (Chiral)

3j (Racemic)

3k (Racemic)

31 (Racemic)

3m-anti (Racemic)

Peak #	Time [min]	Area [µv.s]	Height [µv]	Area [%]	
1	97.296	9718019	93390	10.77049	
2	100.387	80510209	674544	89.22951	

3m-syn (Racemic)

DEFACET REFORM					
Peak #	Time [min]	Area [µv.s]	Height [µv]	Area [%]	
1	53.923	27106584	434703	66.26426	
2	74.231	13800210	139488	33.73574	

30 (Racemic)

References

- [1] Y.-Y. Wu, Y.-Z Zhang, M.-L. Yu, G. Zhao, S.-W. Wang, Org. Lett. 2006, 8, 4417.
- [2] J.- R Chen, H.-H. Lu, X. -Y. Li, L. Cheng, J. Wan, W.- J. Xiao, Org. Lett. 2005, 7, 4543
- [3] N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas, J. Am. Chem. Soc. 2006, 128, 734.
- [4] H. Yang, R. G. Carter, Org. Lett. 2008, 10, 4649.
- [5] M. Gruttadauria, F. Giacalone, A. M. Marculescu, P. L. Meo, S. Riela, R. Noto, *Eur. J. Org. Chem.* 2007, 4688.
- [6] G. Q. Ying, L. E. Shi, Y. Yi, Z. X. Tang and J. S. Chen, *Process Biochem.* 2006, 41, 1276–1281.