Supporting Information

Solvent- and catalyst-free synthesis of 2,3-dihydro-1*H*-benzo[*d*]imidazoles

Da-Peng Li,^a Guang-Liang Zhang,^a Li-Tao An,^a Jian-Ping Zou^{*a} and Wei Zhang^{*b}

 ^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou, Jiangsu 215123, China
^b Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA

	Page
I. General information and general experimental procedures	S-1
II. Compound Analytical data	S-2
III. ¹ H, ¹³ CNMR and HRMS spectra	S-11
IV. X-ray crystal structure of 3c, 3g and 3j	S-62

I. General information and experimental procedures

Solvents were dried by the standard procedures. ¹H and ¹³C NMR spectra were determined in CDCl₃ or DMSO- d_6 on a Varian-Inova 400MHz spectrometer and chemical shifts were reported in ppm from internal TMS (δ). High resolution mass spectra were recorded on a MicroMass TOF mass spectrometer (EI). Column chromatography was performed with 200-300 mesh silica gel using flash column techniques. All of the reagents were used directly as obtained commercially unless otherwise noted.

Phenylenediamine (1 mmol) and 1,3-dichloroacetone (2 mmol) were conducted into a mortar and ground at 20 °C until the end of the completion (monitored by TLC). For some o-phenylenediamines with electron-withdrawing groups, the reactants need to be put into a tube and heated at 60 °C in an oil bath. After diluted with a bit of acetone, the residue was purified directly by column chromatography to afford the desired compounds **3**.

II. Compound analytical data

2,2-Bis(chloromethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (3a)

3a

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.79 (s, 4H, 2CH₂), 4.38 (s, br s, 2H, NH), 6.56-6.70 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 46.9, 82.1, 110.1, 121.2, 138.3; HRMS: calcd for C₉H₁₀Cl₂N₂, 216.0221 [M⁺], found 216.0093.

2,2-Bis(chloromethyl)-5-methyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (3b)

3b

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 2.22 (s, 3H, CH₃), 3.80 (s, 4H, 2CH₂), 4.30 (s, 2H, 2NH), 6.44 (s, 1H, ArH), 6.50 (s, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 46.9, 82.2, 110.2, 111.2, 121.2, 131.1, 135.9, 138.7; HRMS: calcd for C₁₀H₁₂Cl₂N₂, 230.0378 [M⁺], found 230.0378.

2,2-Bis(chloromethyl)-5-nitro-2,3-dihydro-1*H*-benzo[*d*]imidazole (3c)

Colorless solid, m.p. 136-138 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.81 (s, 4H, 2CH₂), 4.69-5.09 (br s, 2H, 2NH), 6.46 (d, 1H, J = 8.4 Hz, ArH), 7.33 (d, 1H, J = 2.4 Hz, ArH), 7.70-7.73 (m, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 46.78, 83.53, 103.9, 106.1, 120.0, 138.3, 141.5, 144.6; HRMS: calcd for C₉H₉Cl₂N₃O₂, 261.0072 [M⁺], found 261.0064; Elemental analysis (%) calcd for C₉H₉Cl₂N₃O₂: C, 41.24; H, 3.46; N, 16.03; found: C, 41.06; H, 3.48; N, 15.85.

2,2-Bis(chloromethyl)-5-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (3d)

Colorless solid, m.p. 105-107 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.76 (s, 4H, 2CH₂), 4.39 (s, 2H, 2NH), 6.56 (d, 1H, J = 10.4 Hz, ArH), 6.74 (s, 1H, ArH), 6.90 (d, 1H, J = 10.0 Hz, ArH), 7.17-7.47 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 44.4, 80.0, 106.3, 107.4, 117.6, 124.4, 124.5, 126.6, 132.1, 135.3, 136.4, 139.3; HRMS: calcd for C₁₅H₁₄Cl₂N₂, 292.0534 [M⁺], found 292.0523.

5-Bromo-2,2-bis(chloromethyl)-2,3-dihydro-1*H*-benzo[*d*|imidazole (3e)

3e

Colorless solid, m.p. 107-109 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 4H, 2CH₂), 4.46 (s, 2H, 2NH), 6.41 (d, 1H, *J* = 8.4 Hz, ArH), 6.66-6.79 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 46.8, 82.7, 110.8, 112.8, 113.6, 123.4, 137.5, 139.9; HRMS: calcd for C₉H₉BrCl₂N₂, 293.9326 [M⁺], found 293.9283.

6-Bromo-2,2-bis(chloromethyl)-2,3-dihydro-1*H*-imidazo[4,5-b]pyridine (3f)

Colorless solid, m.p. 90-92 °C; ¹H NMR (400 MHz, CDCl₃): δ 4.72 (s, 4H, 2CH₂), 6.42 (s, 1H, NH), 7.49-7.66 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 39.7, 106.6, 109.1, 112.5, 115.9, 136.4, 138.3, 142.0; HRMS: calcd for C₈H₈BrCl₂N₃, 294.9279 [M⁺], 260.9491 [M⁺-Cl+1], found 260.9489 [M⁺-Cl+1].

2,2-Bis(chloromethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylic acid (3g)

Colorless solid, m.p. 142-144 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.76 (s, 4H, 2CH₂), 6.32-7.18 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 48.2, 82.6, 104.4, 106.3, 119.7, 122.7, 139.2, 144.1, 167.9; HRMS: calcd for C₁₀H₁₀Cl₂N₂O₂, 260.0119 [M⁺], found

260.0115.

1-Benzyl-2,2-bis(chloromethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (3h)

Colorless solid, m.p. 96-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.80-3.84 (AB coupling, J_1 = 11.7 Hz, J_2 = 8.0 Hz, 4H, 2CH₂), 4.47 (s, H, NH), 4.52 (s, 2H, CH₂), 6.09-6.11 (m, 1H, ArH), 6.58-6.59 (m, 1H, ArH), 7.23-7.38 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 46.7, 48.1, 84.7, 105.5, 108.2, 118.7, 120.3, 126.6, 127.3, 128.7, 136.6, 138.3, 140.7; HRMS: calcd for C₁₆H₁₆Cl₂N₂, 306.0661 [M⁺], found 306.0677.

2,2-Bis(chloromethyl)- 5-chloro-2,3-dihydro-1*H*-benzo[*d*]imidazole (3i)

3i

Colorless solid, m.p. 50-52 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 4H, 2CH₂), 4.42 (br s, 2H, 2NH), 6.44-6.64 (m, 3H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 46.7, 82.8, 110.0, 110.2, 120.3, 125.8, 136.69, 139.6; HRMS: calcd for C₉H₉Cl₃N₂, 249.9831 [M⁺], found 249.98.

(2,2-Bis(chloromethyl)-5-benzoyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (3j)

3j

Colorless solid, m.p. 156-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.83 (s, 4H, 2CH₂), 4.55-5.00 (br s, 2H, 2NH), 6.51(d, 1H, *J* = 7.6 Hz, ArH), 7.21(d, 1H, *J* = 10.4 Hz, ArH) 7.13 (s, 1H, ArH), 7.43-7.73 (m, 5H, ArH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 48.2, 82.5, 103.5, 103.9, 105.5, 125.6, 126.6, 127.9, 128.6, 130.7, 139.3, 139.5, 144.8, 193.8; HRMS: calcd for C₁₆H₁₄Cl₂N₂O, 320.0483, found 320.0468.

2,2-Bis(chloromethyl)-2,3-dihydro-1H-perimidine(3k)

Colorless solid, m.p. 126-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.79(s, 4H, 2CH₂), 4.73(br s, 2H, 2NH), 6.55(d, 2H, J_2 = 7.1Hz, ArH), 7.28-7.29(m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 107.1, 112.8, 118.7, 127.7, 134.8, 137.7. HRMS: calcd for C₁₃H₁₂Cl₂N₂ 266.0378[M⁺], found 266.0367.

2,2-Bis(chloromethyl)-2,3-dihydrobenzo[d]thiazole(3l)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 4.03 (br s, 1H, NH), 4.34(s, 4H, 2CH₂), 7.35-6.64(m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): 46.1, 79.3, 110.5, 120.9, 122.2, 123.8, 126.0, 144.8. HRMS: calcd for C₉H₉Cl₂NS 232.9833 [M⁺], found 232.9836.

2,2-Bis(hydroxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (4a)

Colorless solid, m.p. 73-75 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.40 (d, 4H, J = 5.1Hz, 2CH₂), 4.56 (t, 2H, J = 5.2Hz, 2OH), 5.28 (br s, 2H, 2NH), 6.28-6.37 (m, 4H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 63.6, 82.9, 107.1, 117.8, 140.7; HRMS: calcd for C₉H₁₂N₂O₂, 180.0899 [M⁺], found 180.0891.

2,2-Bis(hydroxymethyl)-5-methyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (4b)

4b

Colorless solid, m.p. 74-76 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 2.07 (s, 3H, CH₃), 3.39 (s, 4H, 2CH₂), 4.60 (s, 2H, 2OH), 5.24 (br s, 2H, 2NH) 6.14-6.18 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 20.8, 63.6, 83.0, 107.3, 108.5, 117.7, 126.6, 138.3, 141.2; HRMS: calcd for C₁₀H₁₄N₂O₂ 194.1055 [M⁺], found 194.1055.

2,2-Bis(hydroxymethyl)-5-nitro-2,3-dihydro-1*H*-benzo[*d*]imidazole (4c)

4c

Colorless solid, m.p. 132-133 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.43 (d, J = 4.0 Hz, 4H, 2CH₂), 4.91 (br s, 2H, 2OH), 6.29 (s, 1H, NH), 6.85 (s, 1H, NH), 6.15-7.53 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 64.1, 85.3, 98.6, 101.8, 119.0, 137.4, 141.2, 148.9; HRMS: calcd for C₉H₁₁N₃O₄ 225.0750 [M⁺], found 223.3504[M⁺-2].

2,2-Bis(hydroxymethyl)-5-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (4d)

4d

Colorless solid, m.p. 123-126 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 3.42 (s, 4H, 2CH₂), 4.74 (br, 2H, 2OH), 5.56-5.63 (br s, 2H, 2NH), 6.33 (d, 1H, J_1 = 8.0Hz, ArH), 6.56 (d, 1H, ArH), 6.67 (dd, 1H, J_1 = 8.0 H_Z, J_2 = 1.6 Hz, ArH), 7.17-7.46 (m, 5H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 63.9, 83.3, 105.3, 106.8, 116.7, 125.5, 125.6, 128.4, 130.1, 140.8, 141.6, 141.6; HRMS: calcd for C₁₅H₁₆N₂O₂, 256.1212 [M⁺], found 256.1212.

2,2-Bis(hydroxymethyl)-5-bromo-2,3-dihydro-1*H*-benzo[*d*]imidazole (4e)

4e

Colorless solid, m.p. 108-110 °C; ¹H NMR (400 MHz, DMSO- d_{δ}): δ 3.40 (s, 4H, 2CH₂), 4.46 (br s, 2H, 2OH), 5.56 (s, 1H, NH), 5.74 (s, 1H, NH), 6.12-6.44 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_{δ}): δ 63.8, 83.8, 107.4, 108.4, 108.8, 119.2, 140.3, 143.0; HRMS: calcd for C₉H₁₁BrN₂O₂ 258.0004 [M⁺], found 257.9987.

2,2-Bis(hydroxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylic acid(4g)

4g

Colorless solid, m.p. 161-163 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.42 (s, 4H, 2CH₂), 4.68 (br, 2H, 2OH), 5.60 (br s, 1H, NH), 6.29 (br s, 1H, NH), 6.21-7.13 (m, 3H, ArH), 11.76 (br, 1H, COOH); ¹³C NMR (100 MHz, DMSO- d_6): δ 63.9, 83.8, 104.1, 106.5, 118.9,

122.5, 140.4, 145.8, 167.8.

1-Benzyl-2,2-bis(hydroxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (4h)

4h

Colorless solid, m.p. 118-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.30 (br s, 3H, 2OH, NH), 3.61-3.70 (AB coupling, J_1 = 11.4 Hz, J_2 = 14.9 Hz, 4H, 2CH₂), 4.34 (s, 2H, CH₂), 6.16-6.65 (m, 4H, ArH), 7.27-7.37 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 47.9, 63.3, 86.5, 106.0, 110.6, 118.7, 121.6, 127.2, 127.8, 129.2, 138.1, 139.3, 143.0; HRMS: calcd for C₁₆H₁₈N₂O₂, 270.1368 [M⁺], found 270.1381.

2,2-Bis(hydroxymethyl)- 5-chloro-2,3-dihydro-1*H*-benzo[*d*]imidazole (4i)

4i

Colorless solid, m.p. 72-74 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.38 (s, 4H, 2CH₂), 4.75 (br s, 2H, 2OH), 5.60-5.61 (br s, 2H, 2NH), 6.16-6.30 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 63.7, 79.2, 84.1, 106.1, 106.7, 116.3, 121.1, 140.0, 142.8; HRMS: calcd for C₉H₁₁ClN₂O₂ 214.0509 [M⁺], found 214.0808.

2,2-Bis(hydroxymethyl)-5-benzoyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (4j)

Colorless solid, m.p. 132-135 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.45 (d, 4H, J = 5.3 Hz, 2CH₂), 4.75 (br s, 2H, 2OH), 5.82 (s, 1H, NH), 6.22-6.87 (m, 3H, ArH), 6.74 (s, 1H, NH), 7.45-7.57 (m, 5H, ArH); ¹H NMR (400 MHz, DMSO- d_6 , D₂O exchange): δ 3.43 (s, 4H, 2CH₂), 6.21-6.86 (m, 3H, ArH), 7.46-7.55 (m, 5H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 64.0, 79.1, 84.0, 103.1, 105.5, 125.8, 125.9, 127.9, 128.5, 130.5, 139.7, 140.8, 146.7, 193.5; HRMS: calcd for C₁₆H₁₆N₂O₃, 284.1161, found 249.1003 [M⁺-2OH-1H].

2,2-Bis(hydroxymethyl)-2,3-dihydro-1H-perimidine(4k)

Colorless solid, m.p. 156-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.46 (d, 4H, J = 5.3Hz,

2CH₂), 4.78 (br s, 2H, , 2NH), 6.08 (br s, 2H, 2OH), 6.48 (d, 2H, J = 7.3Hz, ArH), 6.89 (d, 2H, J = 8.0Hz, ArH), 7.10 (t, 2H, J = 7.7Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 62.3, 68.1, 104.2, 111.4, 114.4, 126.9, 134.0, 140.7. HRMS: calcd for C₁₃H₁₄N₂O₂ 230.1055[M⁺], found 230.1060.

2,2-Bis(hydroxymethyl)-2,3-dihydrobenzo[d]thiazole(4l)

Colorless solid, m.p. 108-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.68 (dd, 2H, J_1 = 5.4Hz, J_2 = 10.7Hz, CH₂), 3.59 (dd, 2H, J_1 = 5.9Hz, J_2 = 10.7Hz, CH₂), 5.05 (t, 2H, J = 5.4Hz, 2OH), 6.15(s, 1H, NH), 6.52-6.50(m, 2H, ArH), 6.79 (t, 1H, J = 7.6Hz, ArH), 6.92 (d, 1H, J = 7.7Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): 40.1, 64.2, 82.2, 109.0, 118.0, 121.1, 124.7, 124.8, 147.3. HRMS: calcd for C₉H₁₁NO₂S 197.0511[M⁺], found 197.0526.

2,2-Bis(methoxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (5a)

5a

Colorless solid, m.p. 78-80 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.40 (s, 6H, 2CH₃), 3.49 (s, 4H, 2CH₂) 4.19 (br s, 2H, 2NH), 6.56-6.67 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 59.8, 75.0, 80.9, 110.8, 120.9, 140.3; HRMS: calcd for C₁₁H₁₆N₂O₂ 208.1212 [M⁺], found 208.1221.

2,2-Bis(methoxymethyl)-5-methyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (5b)

5b

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 2.12 (s, 3H, CH₃), 3.39 (s, 6H, 2CH₃), 3.47 (s, 2H, 2CH₂), 5.24 (br s, 2H, 2NH), 6.43-6.51 (m, 3H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 59.7, 75.0, 81.0, 110.8, 111.6, 120.8, 130.6, 137.8, 140.8; HRMS: calcd for C₁₂H₁₈N₂O₂ 222.1368 [M⁺], found 222.1400.

2,2-Bis(methoxymethyl)-5-nitro-2,3-dihydro-1*H*-benzo[*d*]imidazole (5c)

Colorless solid, m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.58 (s, 6H, 2CH₃), 4.85 (s, 2H, 2CH₂), 8.19-9.02 (m, 3H, ArH), 9.15 (br s, 2H, 2NH); ¹³C NMR (100 MHz, CDCl₃): δ 30.0, 59.9, 74.5, 123.5, 124.1, 12.3, 131.2, 144.6, 146.9; HRMS: calcd for C₁₁H₁₅N₃O₄ 253.1063 [M⁺], found 189.0535 (M⁺-2OCH₃-2H).

2,2-Bis(methoxymethyl)-5-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (5d)

5d

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 3.42 (s, 6H, 2CH₃), 3.52 (s, 4H, 2CH₂), 4.28 (br s, 2H, 2NH), 6.22-6.91 (m, 3H, ArH), 7.24-7.51 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 59.9, 75.1, 81.3, 109.6, 110.6, 113.1, 120.0, 126.7, 127.1, 129.0, 134.4; HRMS: calcd for C₁₅H₁₆N₂O₂ 284.1525 [M⁺], found 284.0046.

2,2-Bis(methoxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazol-5-carboxylic acid (5g)

Colorless solid, m.p. 116-119 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 3.29 (s, 6H, 2CH₃), 3.34 (s, 4H, 2CH₂), 5.96 (br s, 1H, NH), 6.61 (br s, 1H, NH), 6.20-7.13 (m, 3H, ArH), 11.79 (br s, 1H, COOH); ¹H NMR (400 MHz, DMSO- d_6 + D₂O): δ 3.27 (s, 6H, 2CH₃), 3.33 (s, 4H, 2CH₂), 6.20-7.13 (m, 3H, ArH); ¹³C NMR (100 MHz, DMSO- d_6): δ 58.9, 75.2, 82.0, 104.1, 106.3, 119.0, 122.5, 140.1, 145.3, 167.9; HRMS: calcd for C₁₂H₁₆N₂O₄ 252.1110 [M⁺], found 252.1117.

1-Benzyl-2,2-bis(methoxymethyl)-2,3-dihydro-1*H*-benzo[*d*]imidazole (5h)

5h

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.33 (s, 6H, 2CH₃), 3.54-3.68 (AB coupling, $J_1 = 9.4$ Hz, $J_2 = 21.0$ Hz, 4H, 2CH₂), 4.33 (br s, H, NH), 4.46 (s, 2H, CH₂), 5.99-6.52 (m, 3H, ArH), 7.23-7.38 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 48.6, 59.7, 74.4, 105.3, 109.1, 113.1, 118.1, 120.5, 127.0, 127.1, 128.8, 138.5; HRMS: calcd for: C₁₈H₂₂O₂N₂ 298.1681 [M⁺], found 298.1696.

2,2-Bis(methoxymethyl)-5-benzoyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (5j)

Red oil; ¹H NMR (400 MHz, CDCl₃): δ 3.36 (s, 6H, 2CH₃), 3.47 (s, 4H, 2CH₂), 4.54 (br s, 1H, NH), 4.82 (br s, 1H, NH), 6.39-7.14 (m, 3H, ArH), 7.38-7.69 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ 59.8, 75.0, 81.7, 106.7, 110.3, 127.4, 128.3, 129.4, 129.8, 131.5, 139.6, 140.0, 145.4, 195.9; HRMS: calcd for C₁₈H₂₀N₂O₃ 312.1474 [M⁺], found 312.1469.

2,2-Bis(methoxymethyl)-2,3-dihydro-1H-perimidine(5k)

Colorless solid, m.p. 114-116 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.40(s, 6H, 2CH₃), 3.51(s, 4H, 2CH₂), 4.78(br s, 2H, 2NH), 6.52 (d, 2H, *J* = 7.3Hz, ArH), 7.16-7.28 (m, 4H, ArH); ¹³C NMR (100 MHz, CDCl₃): 59.8, 67.6, 73.5, 106.3, 113.0, 117.6, 127.5, 134.9, 139.4. HRMS: calcd for C₁₅H₁₈N₂O₂ 258.1368 [M⁺], found 258.1371.

2,2-Bis(methoxymethyl)-2,3-dihydrobenzo[d]thiazole(5l)

Colorless solid, m.p. 74-76 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.41(s, 6H, 2CH₃), 3.74-3.62(m, 4H, 2CH₂), 4.51(br s, 1H, NH), 6.61 (d, 1H, *J* = 7.8Hz, ArH), 6.71 (t, 1H, *J* = 7.5Hz, ArH), 6.89 (t, 1H, *J* = 8.2Hz, ArH), 7.01 (d, 1H, *J* = 7.6Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): 59.9, 75.4, 78.5, 111.4, 121.0, 122.5, 125.8, 126.6, 146.3. HRMS: calcd for C₁₅H₁₇NO₂S 225.0823[M⁺], found 225.0819.

III. ¹H, ¹³C NMR and HRMS spectra

Multiple Mass Analysis: 21 mass(es) processed Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0

Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Chemical Formula: $C_9H_9Cl_2N_3O_2$

TOF MS EI+

Monoisotopic Mass, Odd and Even Electron lons 796 formula(e) evaluated with 30 results within limits (up to 50 closest results for each mass ct Mass: 261.0072

El-200605023 ait-s 195 (3.250) Cm (195:208-(15:41+293:326))

100-3			212.0217										2.866		
% 35.9805	63.0245	75.021891.0421		116.0546	166. 159.0795.		0338		213.0218 229.0298 261.0046			i 2	294.0226		
40	60	80	100	120	140	160	180	200	220	240		260	280	300	
Minimum:	5.00						-1.5								
Maximum:	100.00			5.0	5.0		50.0								
Mass	RA	Calc.	Mass	mDa	PPM		DBE	Score	Fo	rmula	a				
75.0218	5.80	75.023	5	-1.7	-22	.3	5.5	1	C6	HЗ					
		75.019	15	2.3	31.	3	1.5	2	c	нз	N2	02			
91.0421	5.66	91.042	2	-0.1	-1.	1	5.0	1	C6	85	N				
		91.038	12	3.9	43.	1.	1.0	2	c	H5	N3	02			
116.0546	9.93	116.05	86	-4.0	-34	.3	2.0	2	C4	HB	N2	02			
		116.05	00	4.6	39.	4	6.5	1	C8	HĢ	N				
117.0523	5.53	117.05	38	-1.5	~13	.0	2.0	1	C3	87	N3	02			
130.0654	7.13	130.06	57	~0.3	-2.	1	6.5	2	C9	HB	N				
		130.06	17	3.7	28.	8	2.5	1	C4	H8	N3	02			
142.0558	7.35	142.05	31	2.7	19.	0	8.0	1	C9	Н6	N2				
143.0619	9.95	143.06	609	1.0	6.8		7.5	1	C9	H7	N2				
144.0712	10.14	144.06	87	2.5	17.	0	7.0	1	C9	H8	N2				
159.0795	14.57	159.07	96	-0.1	-0.	9	7.0	1	C9	Н9	N3				
166.0338	46.00	166.03	23	1.5	9.0		2.0	2	C5	Н9	N2	02	37Cl		
		166.02	98	4.0	24.	2	6.0	3	C8	87	NZ	35C	1		
		166.03	83	~4.5	-27	.3	1.5	1	C4	H9	N3	02	35Cl		
167.0295	6.05	167.02	76	1.9	11.	6	2.0	3	C4	8H	N3	02	37Cl		
		167.03	16	-2.1	-12	.4	6.0	2	C9	HB	N	37C1			
		167.02	64	3.1	18.	8	5.5	1	_ C9	HS	0	35Cl			
		167.02	50	4,5	26.	8	6.0	4	C7	Hб	NB	35C	1		
168.0300	14.36	168.03	29	~2.9	-17	. 0	5.5	3	C7	87	N3	35C	1		
		168.02	68	3.2	18.	9	6.0	2	C8	87	N2	37C	1		
		168.03	42	-4.2	-25	.0	5.0	1	C9	H9	0	35Cl			
173.0611	15.54	173.05	89	2.2	12.	6	8.0	1	C9	87	N3	0			
177.0431	7.43	10 M 40													
189.0553	21.19	189.05	38	1.5	7.8		8.0	1	C9	H7	N3	02			
212.0217	100.00	212.02	27	-1.0	-4.	6	6.5	1	C8	H7	N3	02	35Cl		
213.0218	12.15	213.02	45	-2.7	-12	. 6	б.5	1	C9	HØ	N2	02	37Cl		
223.0187	6.46	223.01	49	3.8	17.	2	8.0	1	C9	HG	N3	02	35C1		
224.0256	10.03	224.02	27	2.9	13.	0	7.5	1	C9	87	N3	02	35Cl		
225.0266	6.43	225.03	05	-3.9	~17	.4	7.0	1	C9	Н8	N3	02	35C1		
261.0046	7.68														

Eager 200 Summarize Results

Method Name : Test Eager 200 (Channel B) Method Filename : CHN0511.MTH Company name : SuzhouUniversity Operator ID : WB

Group No : 1 Sample Name	Element & Nitrogen	Carbon	Hydrogen			
an5-15	15.84960079	41.05747604	3.478757858			
Component Name	Sample(s) in G Average	roup No : 1 Std. Dev.				
Nitrogen Carbon Hydrogen	15.8496 41.05748 3.478758	0.0000000 0.0000000 0.0000000	H 3c			

S-21

3.0

2.0

1.0

0.0

8.0 ppm (t1) 7.0

6.0

5.0

4.0

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

7.0

ppm (t1)

6.0

1.0

0.0

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

IV. X-Ray crystal structures

CCDC 793232 Formula: C₉H₉Cl₂N₃O₂; Unit cell parameters: a = 5.6284(2), b = 12.5878(4), c = 15.9350(4) Å; $\alpha = 90.00^{\circ}, \beta = 98.913(2)^{\circ}, \gamma = 90.00^{\circ}$; space group P21/c.

CCDC 793231

Formula: $C_{10}H_{10}Cl_2N_2O_2$; Unit cell parameters: a = 5.88980(10), b = 18.9022(4), c = 10.1073(2) Å; $\alpha = 90.00^\circ$, $\beta = 105.3930(10)^\circ$, $\gamma = 90.00^\circ$; space group P21/c.

CCDC 793230

Formula: C₁₆ H₁₄ Cl₂ N₂ O₁ Unit cell parameters: a 9.8379(6) b 12.4803(7) c 13.9555(8)alpha 108.764(2) beta 92.805(2) gamma 106.932(2); space group P-1