Supplementary Information

Catalyst-free and catalytic Friedel-Crafts alkylations of indoles in Solkane® 365mfc, an environmentally benign alternative solvent

Xiu-Hua Xu, Akihiro Kusuda, Etsuko Tokunaga, and Norio Shibata*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Table of Contents

1.	General Methods:	SI-1
2.	Preparation of catalyst 4a, 4d-4e and 4e':	SI-2
	Quinidine 9-O-[3,5-bis(trifluoromethyl)benzyl] ether (S1):	SI-2
	Cupreidine 9-O-[3,5-bis(trifluoromethyl)benzyl] ether (4d):	SI-2
	Cupreidine (4a) ¹ :	SI-3
	6'-(Methoxymethyl) cupreidine (S2):	SI-3
	6'-(Methoxymethyl)-cupreidine 9- <i>O</i> -(4- <i>n</i> -Perfluorooctyl)benzyl ether (S3) ^{2, 3} :	SI-4
	Cupreidine 9-O-(4-n-Perfluorooctyl)benzyl ether (4e):	SI-5
	Cupreine (S4) ⁴ :	SI-5
	6'-(Methoxymethyl) cupreine (S5):	SI-6
	6'-(Methoxymethyl) cupreine 9- <i>O</i> -(4- <i>n</i> -Perfluorooctyl)benzyl ether (S6) ^{2, 3} :	SI-6
	Cupreine 9- <i>O</i> -(4- <i>n</i> -Perfluorooctyl)benzyl ether (4e'):	SI-7
3.	Preparation of 7- <i>tert</i> -Butyl-1 H indole $(1n)^5$:	SI-8
4.	General experimental procedure for the F-C alkylation of indoles with ethyl trifluoropyruvate in	Solkane®
30	65mfc:	SI-8
	3,3,3-Trifluoro-2-hydroxy-2-(1H-indol-3-yl)-propionic acid ethyl ester (2a) ⁶ :	SI-9
	3,3,3-Trifluoro-2-hydroxy-2-(2-methyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2b) ⁷ :	SI-9
	3,3,3-Trifluoro-2-hydroxy-2-(2-phenyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2c) ⁸ :	SI-9
	3,3,3-Trifluoro-2-hydroxy-2-(4-methyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2d):	SI-9
	3,3,3-Trifluoro-2-hydroxy-2-(5-methyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2e) ⁶ :	SI- 10
	3,3,3-Trifluoro-2-hydroxy-2-(5-methoxy-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2f) ⁶ :	SI- 10
	3,3,3-Trifluoro-2-hydroxy-2-(5-fluoro-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2g) ⁶ :	SI- 10
	3,3,3-Trifluoro-2-hydroxy-2-(5-chloro-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2h) ⁶ :	SI- 11
	3,3,3-Trifluoro-2-hydroxy-2-(5-bromo-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2i) ⁶ :	SI- 11
	3,3,3-Trifluoro-2-hydroxy-2-(5-iodo-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2j) ⁶ :	SI- 11
	3,3,3-Trifluoro-2-hydroxy-2-(6-methyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2k):	SI- 11
	3,3,3-Trifluoro-2-hydroxy-2-(7-methyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2l):	SI-12
	3,3,3-Trifluoro-2-hydroxy-2-(7-ethyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2m):	SI-12
	3,3,3-Trifluoro-2-hydroxy-2-(7-tert-butyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2n):	SI-13
	3,3,3-Trifluoro-2-hydroxy-2-(7-bromo-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (20):	SI-13
	3,3,3-Trifluoro-2-hydroxy-2-(7-phenyl-1 <i>H</i> -indol-3-yl)-propionic acid ethyl ester (2p):	SI-13
	3,3,3-Trifluoro-2-hydroxy-2-(1-methyl-indol-3-yl)-propionic acid ethyl ester (2q) ⁸ :	SI-14
5.	General experimental procedure for the F-C alkylation of indoles with ethyl glyoxylate in	Solkane®
30	65mfc:	SI-14
	Hydroxy-(1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3a) ⁹ :	SI-15
	Hydroxy-(2-methyl-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3b):	SI-15
	Hydroxy-(4-methyl-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3d):	SI-15

Hy	droxy-(5-methyl-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3e) ⁹ :	16
Hy	droxy-(5-methoxy-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3f) ⁹ :	16
Hy	droxy-(5-fluoro-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3g) ⁹ :	16
Hy	droxy-(5-chloro-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3h) ⁹ :	17
Hy	droxy-(5-bromo-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3i) ⁹ :	17
Hy	droxy-(5-iodo-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3j) ¹⁰ :	17
Hy	droxy-(5-methyl-1 <i>H</i> -indol-carboxylate-3-yl)-acetic acid ethyl ester (3r):	17
Hy	droxy-(6-methyl-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3k):	18
Hy	droxy-(7-methyl-1 <i>H</i> -indol-3-yl)-acetic acid ethyl ester (3l):	18
6.	Catalyst-free and catalytic enantioselective F-C alkylation of 1a with ethyl trifluoropyruvate in Solkan	e®
365/2	27:	19
7.	Catalyst-free and catalytic enantioselective F-C alkylation of 1a with ethyl glyoxylate in Solkan	e®
365/2	27:	19
8.	Experimental procedure for the F-C alkylation of indole 1a with ethyl trifluoropyruvate, isolation of	2a
with 1	recovering Solkane [®] 365mfc:	20
9.	References:	20
10.	HPLC chart:	21
11.	NMR spectrum chart:	40

1. General Methods:

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred *via* syringe and were introduced into the reaction vessles though a rubber septum. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μm. The ¹H-NMR (300 MHz), ¹H-NMR (200 MHz), ¹⁹F-NMR (282.3 MHz), ¹⁹F-NMR (188.2 MHz) and ¹³C-NMR (150.9 MHz) spectra for solution in CDCl₃ or CD₃OD were recorded on a Buruker Avance 600 and Varian Mercury 200 or 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALPAK AS-H or CHIRALCEL OD-H column. Mass spectra were recorded on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/ IR-4100 spectrometer.

2. Preparation of catalyst 4a, 4d-4e and 4e':

Quinidine 9-O-[3,5-bis(trifluoromethyl)benzyl] ether (S1):

To a stirred solution of Quinidine (100.0 mg, 0.31 mmol) in dry DMF (1.5 mL), NaH (30.9 mg, 60% suspension in mineral oil, 0.77 mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 2 h. Then 3,5-Bis(trifluoromethyl)benzyl bromide (62.3 μ L, 0.34 mmol) was added slowly and it was stirred at room temperature for 4 h. After dilutiion with sat. NH4Cl aq, aqueous layer was extracted with Et₂O, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 90/10/0.1) to give S1 as a white solid (129.0 mg, 76% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.34 (m, 1H), 1.52-1.55 (m, 1H), 1.77-1.82 (m, 2H), 2.11 (dd, *J* = 13.2, 9.3 Hz, 1H), 2.26 (q, *J* = 8.4 Hz, 1H), 2.71-2.87 (m, 2H), 2.92-3.00 (m, 1H), 3.12-3.25 (m, 2H), 3.92 (s, 3H), 4.56 (s, 2H), 5.00 (s, 1H), 5.03-5.07 (m, 1H), 5.31 (brs, 1H), 5.93-6.04 (m, 1H), 7.31 (s, 1H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.42 (d, *J* = 3.0 Hz, 1H), 7.80 (s, 2H), 7.82 (s, 1H), 8.07 (d, *J* = 9.3 Hz, 1H), 8.77 (d, *J* = 4.5 Hz, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -63.4 (s, 6F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 22.1, 26.4, 27.8, 39.7, 49.8, 50.1, 55.5, 59.8, 69.8, 82.1, 100.9, 114.5, 118.7, 121.5, 121.8, 123.2 (q, *J* = 273.1 Mz), 127.1, 127.2, 131.7 (q, *J* = 34.7 Hz), 132.0, 140.1, 140.56, 143.61, 144.8, 147.5, 157.9 ; IR (KBr) 2939, 1620, 1506, 1473, 1357, 1280, 1185, 1134, 890, 858 cm⁻¹ ; mp = 143-146 °C ; MS (EI, *m/z*) 550 (M⁺) ; HRMS calcd. for C₂₉H₂₈F₆N₂O₂⁺ : 550.2055 Found : 550.2051 ; [α]_D²⁵ = +99.9 (c = 1.94, CHCl₃)

Cupreidine 9-O-[3,5-bis(trifluoromethyl)benzyl] ether (4d):

Cinchona alkaloid derivative S1 (555.0 mg, 1.01 mmol) and NaSEt (340.0 mg, 4.04 mmol) were dissolved in dry DMF (6.2 mL) at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 110 °C for 18 h. The reaction mixture was cooled down to room temperature, diluted with sat. NH4Cl aq. Then aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 90/10/0.1) to give 4d as a light brown solid (303.4 mg, 56% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.26 (br, 1H), 1.51-1.1.61 (m, 1H), 1.69 (m, 1H), 1.92 (br, 1H), 2.37-2.43 (m, 2H), 2.89-2.99 (m, 1H), 3.13-3.26 (m, 3H), 3.65 (br, 1H), 4.52 (d, J = 12.3 Hz, 1H), 4.64 (d, J = 12.3 Hz, 1H), 5.01-5.11 (m, 2H), 5.89-6.01 (m, 2H), 7.36 (dd, J = 9.2, 2.4 Hz, 1H), 7.41 (d, J = 4.2 Hz, 1H), 7.83-7.87 (m, 4H), 8.03 (d, J = 9.0 Hz, 1H), 8.73-8.72 (m, 2H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -63.3 (s, 6F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 19.7, 25.6, 27.6, 39.2, 49.6, 49.7, 59.0, 69.8, 79.6, 105.2, 115.3, 117.4, 121.6, 123.1, 123.2 (q, J = 273.1 Hz), 127.0, 127.5, 131.66, 131.73 (q, J = 33.2 Hz), 139.0, 140.3, 142.4, 143.6, 146.5, 157.0 ; IR (KBr) 2940, 2875, 1619, 1509, 1468, 1280, 1176, 1134, 919, 884, 683 cm⁻¹ ; mp = 99-102 °C ; MS (EI, *m*/*z*) 536 (M⁺), HRMS calcd. for C₂₈H₂₆F₆N₂O₂⁺ : 536.1898 Found : 536.1883 ; [α]_D²⁵ = +94.0 (c = 1.77, CHCl₃)

Cupreidine (4a)¹:

Quinidine (2.0 g, 6.16 mmol) and NaSEt (2.0 g, 24.6 mmol) were dissolved in dry DMF (20.0 mL) at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 110 °C for 2.5 h. The reaction mixture was cooled down to room temperature, diluted with sat. NH₄Cl aq. Then aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 90/10/0.1) to give 4a as a yellowish solid (1.44 g, 75% yield).

¹H NMR (CDCl₃, 300 MHz) δ 0.89-0.92 (m, 1H), 1.26-1.32 (m, 2H), 1.68 (br, 1H), 2.11 (d, *J* = 7.5 Hz, 1H), 2.26-2.33 (m, 2H), 2.58 (br, 1H), 2.85 (t, *J* = 11.4 Hz, 1H), 3.02 (t, *J* = 9.0 Hz, 1H), 3.82 (dd, *J* = 11.6, 8.3, 1H), 4.97-5.00 (m, 1H), 5.05 (s, 1H), 6.01-6.12 (m, 2H), 6.80 (br, 2H), 7.30 (s, 1H), 7.41 (s, 1H), 7.58 (d, *J* = 4.5 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 8.63 (d, *J* = 4.5 Hz, 1H) ; IR (KBr) 2939, 1618, 1469, 1407, 1242, 1103, 1047, 998, 932, 860, 832 cm⁻¹ ; MS (ESI, *m/z*) 311.3 [M+H]⁺ ; $[\alpha]_D^{25} = +355.2$ (c = 2.13, CHCl₃)

6'-(Methoxymethyl) cupreidine (S2):

To a stirred solution of 4a (200.0 mg, 0.64 mmol) in dry DMF (3.0 mL), NaH (33.5 mg, 60% suspension in mineral oil, 0.84 mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 0 °C for 1 h. Then MOM chloride (53.8 μ L, 0.71 mmol) was added slowly and it was stirred at room temperature for 3 h. After dilution with water, aqueous layer was extracted with Et₂O, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 90/10/0.1) to give S2 as a white solid (135.1 mg, 59% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.20-1.29 (m, 1H), 1.50-1.55 (m, 2H), 1.76 (br, 1H), 1.95 (dd, J = 13.2, 9.6 Hz, 1H), 2.18-2.26 (m, 1H), 2.34 (brs, 1H), 2.69-2.79 (m, 1H), 2.84-2.92 (m, 2H), 3.10 (dt, J = 9.3 Hz, 4.8 Hz, 1H), 3.21 (ddd, J = 13.7, 8.0, 2.1 Hz, 1H), 3.47 (s, 3H), 4.99-5.01 (m, 1H), 5.04 (d, J = 0.9 Hz, 1H), 5.21 (d, J = 15.6 Hz, 1H), 5.24 (d, J = 15.9 Hz, 1H), 5.58 (d, J = 5.1 Hz, 1H), 5.91-6.02 (m, 1H), 7.40 (dd, J = 9.3, 2.7 Hz, 1 H), 7.49 (d, J = 2.4 Hz, 1H), 7.56 (d, J = 4.2 Hz, 1H), 8.02 (d, J = 9.3 Hz, 1H), 8.74 (d, J = 4.5 Hz, 1H) ;¹³C NMR (CDCl₃, 150.9 MHz) δ 21.3, 26.4, 28.2, 40.0, 49.4, 50.1, 56.1, 59.9, 71.7, 94.5, 105.3, 114.5, 118.5, 121.9, 126.5, 131.7, 140.5, 144.5, 148.0, 148.2, 155.0 ; IR (KBr) 2932, 2698, 1625, 1509, 1237, 1178, 1152, 1068, 1016, 910, 867, 823 cm⁻¹ ; mp = 160-163 °C ; MS (EI, *m*/z) 354 (M⁺), HRMS calcd. for C₂₁H₂₆N₂O₃⁺ : 354.1943 Found : 354.1936 ; [α]_D²⁵ = +173.8 (c = 0.13, CHCl₃)

6'-(Methoxymethyl)-cupreidine 9-O-(4-*n*-Perfluorooctyl)benzyl ether (S3)^{2, 3}:

To a stirred solution of S2 (660.0 mg, 1.86 mmol) in dry DMF (10 mL), NaH (186.4 mg, 60% suspension in mineral oil, 4.65 mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 0 °C for 2 h. Then 4-*n*-Perfluorooctylbenzylbromide (1.01 g, 1.86 mmol) was added and it was stirred at room temperature for 3 h. After dilution with sat. NH4Cl aq, aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH = 9/1) to give S3 as a colorless oil (1.42 g 89% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.37 (m, 1H), 1.49-1.54 (m, 2H), 1.78 (br, 1H), 2.00-2.08 (m, 1H), 2.20-2.27 (m, 1H), 2.67-2.84 (m, 2H), 2.86-2.94 (m, 1H), 3.08-3.27 (m, 2H), 3.51 (s, 3H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.53 (d, *J* = 12.3 Hz, 1H), 4.98 (s, 1H), 5.02-5.03 (m, 1H), 5.24-5.27 (m, 2H), 5.34 (d, *J* = 6.6 Hz, 1H), 5.89-6.00 (m, 1H), 7.45-7.65 (m, 7H), 8.08 (d, *J* = 9.3 Hz, 1H), 8.79 (d, *J* = 4.2 Hz, 1H); ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -81.2 (t, *J* = 10.2 Hz, 3F), -111.1 (t, *J* = 15.0 Hz, 2F), -121.7 (s, 2F), -122.3 (s, 6F), -123.2 (s, 2F), -126.6 (s, 2F); ¹³C NMR (CDCl₃, 150.9 MHz) δ 22.4, 26.3, 28.0, 39.8, 49.3, 50.0, 56.1, 60.3, 70.4, 80.8, 94.6, 105.4, 108-120 (m, C₈F₁₇), 114.4, 118.8, 122.1, 126.9 (t, *J* = 7.5 Hz), 127.4, 127.6, 128.2 (t, *J* = 24.1 Hz), 131.9, 140.3, 142.2, 144.8, 145.0, 148.1, 155.3 ; IR (neat) 2935, 1619, 1508, 1241, 1213, 1152, 1000, 828, 803, 658 cm⁻¹ ; MS (ESI, *m*/*z*) 863.3 [M+H]⁺; HRMS calcd. for [C₃₆H₃₁F₁₇N₂O₃+H]⁺ : 863.2141 Found : 863.2134 ; [α]_D²⁵ = +55.2 (c = 1.28, CHCl₃)

Cupreidine 9-0-(4-n-Perfluorooctyl)benzyl ether (4e):

To a stirred solution of S3 (1.25 g, 1.45 mmol) in dry MeOH (15.0 mL), 12N HCl (~10 drops) was added. The resulting mixture was stirred at 50 °C for 3 h. After dilution with water, aqueous layer was extracted with CH_2Cl_2 , and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 95/5/0.1) to give 4e as a yellowish solid (971.4 mg, 82% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.18-1.26 (m, 1H), 1.40-1.51 (m, 1H), 1.59 (br, 1H), 1.82 (br, 1H), 2.78-2.33 (m, 2H), 2.82-2.94 (m, 2H), 3.09-3.13 (m, 2H), 3.55 (br, 1H), 4.34 (d, *J* = 11.7 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 4.96 (s, 1H), 5.01 (d, *J* = 4.2 Hz, 1H), 5.33 (brs, 1H), 5.59 (brs, 1H), 5.88-6.00 (m, 1H), 7.36 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.43-7.58 (m, 5H), 7.82 (s, 1H), 8.03 (d, *J* = 9.0 Hz, 1H), 8.70 (d, *J* = 4.2 Hz, 1H); ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -81.3 (t, *J* = 9.9 Hz, 3F), -111.1 (t, *J* = 13.8 Hz, 2F), -121.7 (s, 2F), -122.3 (s, 6F), -123.2 (s, 2F), -126.6 (s, 2F); ¹³C NMR (CDCl₃, 150.9 MHz) δ 19.6, 25.7, 27.8, 39.3, 49.3, 49.7, 59.0, 70.5, 79.3, 105.5, 108-120 (m, C₈F₁₇), 115.1, 117.5, 123.2, 126.9 (t, *J* = 7.5 Hz), 127.5, 127.6, 128.3 (t, *J* = 24.1), 131.7, 139.4, 141.9, 142.7, 143.7, 146.6, 157.1 ; IR (KBr) 2941, 1619, 1510, 1469, 1212, 1150, 830, 735, 723, 659 cm⁻¹ ; mp = 100-103 °C ; MS (ESI, *m/z*) 819.3 [M+H]⁺ ; HRMS calcd. for [C₃₄H₂₇F₁₇N₂O₂+H]⁺ : 819.1879 Found : 819.1876 ; [α]_D²⁵ = +73.4 (c = 2.32, CHCl₃)

Cupreine (S4)⁴:

Quinine (2.60 g, 8.0 mmol) and NaSEt (2.69 g, 32.0 mmol) were dissolved in dry DMF (24.0 mL) at room temperature under nitrogen atmosphere. The resulting mixture was stirred overnight at 110 °C. The reaction mixture was cooled down to room temperature, diluted with sat. NH4Cl aq. Then aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 90/10/0.1) to give S4 as a yellowish solid (1.37 g, 55% yield).

¹H NMR (CD₃OD, 300 MHz) δ 1.39-1.47 (m, 1H), 1.58-1.61 (m, 1H), 1.79 (br, 1H), 1.84-1.90 (m, 2H), 2.35 (br, 1H), 2.64-2.76 (m, 2H), 3.06-3.14 (m, 2H), 3.70-3.73 (m, 1H), 4.93 (br, 1H), 4.99 (br, 1H), 5.53 (d, *J* = 3.0 Hz, 1H), 5.68-5.79 (m, 1H), 7.30-7.35 (m, 2H), 7.61 (d, *J* = 4.5 Hz, 1H), 7.90 (d, *J* = 9.0 Hz, 1H), 8.58 (d, *J* = 4.8 Hz, 1H) ; IR (KBr) 3165, 2937, 1617, 1471, 1420, 1241, 1231, 1095, 856, 826 cm⁻¹ ; MS (ESI, *m/z*) 311.3 [M+H]⁺;

 $[\alpha]_D^{25} = -173.8 \ (c = 0.68, MeOH)$

6'-(Methoxymethyl) cupreine (S5):

To a stirred solution of S4 (988.0 mg, 3.18 mmol) in dry DMF (12.0 mL), NaH (170.0 mg, 60% suspension in mineral oil, 4.24 mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 0 °C for 1 h. Then MOM chloride (0.27 mL, 3.50 mmol) was added slowly and it was stirred overnight at room temperature. After dilution with water, aqueous layer was extracted with Et_2O , and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/ $Et_3N = 90/10/0.1$) to give S5 as a white solid (135.1 mg, 59% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.48-1.52 (m, 1H), 1.56-1.61 (m, 1H), 1.67-1.74 (m, 1H), 1.80 (br, 1H), 2.25 (br, 1H), 2.57-2.71 (m, 3H), 3.00-3.05 (m, 1H), 3.08-3.17 (m, 1H), 3.37-3.42 (m, 1H), 3.46 (s, 3H), 3.93 (brs, 1H), 4.89-4.98 (m, 2H), 5.19 (d, J = 9.3 Hz, 1H), 5.21 (d, J = 8.7 Hz, 1H), 5.51 (d, J = 4.2 Hz, 1H), 5.70-5.81 (m, 1H), 7.38 (dd, J = 9.2, 2.1 Hz, 1H), 7.49 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 4.5 Hz, 1 H), 7.99 (d, J = 9.3 Hz, 1H), 8.68 (d, J = 4.5 Hz, 1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 21.6, 27.5, 27.8, 39.9, 43.0, 56.0, 56.8, 60.0, 71.5, 94.2, 105.3, 114.2, 118.6, 121.6, 126.4, 131.3, 141.9, 144.2, 147.9, 148.7, 154.8 ; IR (KBr) 2933, 1621, 1590, 1509, 1458, 1239, 1184, 1152, 1072, 998, 922, 827 cm⁻¹ ; mp = 141-144 °C ; MS (ESI, *m/z*) 355.3 [M+H]⁺ ; HRMS calcd. for $[C_{21}H_{26}N_2O_3+H]^+$: 355.2022 Found : 355.2037 ; [α]_D²⁵ = -77.4 (c = 1.49, CHCl₃)

6'-(Methoxymethyl) cupreine 9-O-(4-*n*-Perfluorooctyl)benzyl ether (S6)^{2,3}:

To a stirred solution of S5 (566.0 mg, 1.60 mmol) in dry DMF (8 mL), NaH (160.0 mg, 60% suspension in mineral oil, 4.0 mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture was stirred at 0 °C for 2 h. Then 4-*n*-Perfluorooctylbenzylbromide (941.0 mg, 1.60 mmol) was added and it was stirred at room temperature for 2 h. After dilution with sat. NH4Cl aq, aqueous layer was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH = 90/10) to give S6 as a colorless oil (1.14g 83% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.53 (br, 1H), 1.68-1.77 (m, 2H), 1.82-1.83 (m, 1H), 1.92 (s, 1H), 2.27 (br, 1H), 2.58-2.73 (m, 2H), 3.06 (dd, *J* = 13.5, 10.2 Hz, 1H), 3.22-3.26 (m, 1H), 3.33-3.40 (m, 1H), 3.50 (s, 3H), 4.48 (s, 2H), 4.91-4.94 (m, 1H), 5.00 (s, 1H), 5.17 (brs, 1H), 5.29 (d, *J* = 18.3 Hz, 1H), 5.31 (d, *J* = 18.3 Hz, 1H), 5.72-5.84 (m, 1H), 7.44-7.59 (m, 6H), 7.67 (brs, 1H), 8.09 (d, *J* = 9.3 Hz, 1H), 8.78 (d, *J* = 4.5 Hz, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -81.2 (t, *J* = 9.9 Hz, 3F), -111.0 (t, *J* = 14.1 Hz, 2F), -121.7 (s, 2F), -122.3 (s, 6F), -123.2 (s, 2F), -126.6 (s, 2F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 23.3, 27.85, 27.88, 40.0, 43.0, 56.1, 57.0, 60.4, 70.3, 81.7, 94.5, 105.6, 106-120 (m, C₈F₁₇), 114.2, 119.0, 122.0, 126.9, 127.2, 127.3 128.1 (t, *J* = 24.1 Hz), 132.0, 142.0, 142.3, 144.8, 145.1, 148.1, 155.2 ; IR (neat) 3420, 2944, 1620, 1508, 1463, 1371, 1200, 1149, 1011, 854, 661 cm⁻¹ ; mp = 75-78 °C ; MS (ESI, *m/z*) 863.4 [M+H]⁺ ; HRMS calcd. for [C₃₆H₃₁F₁₇N₂O₃+H]⁺ : 863.2141 Found : 863.2150 ; [α]_D²⁵ = -5.85 (c = 1.58, CHCl₃)

Cupreine 9-O-(4-n-Perfluorooctyl)benzyl ether (4e'):

To a stirred solution of S6 (1.04 g, 1.21 mmol) in dry MeOH (12.0 mL), 12N HCl (~10 drops) was added. The resulting mixture was stirred at 50 °C for 40 min. After dilution with water, aqueous layer was extracted with CH₂Cl₂, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/MeOH/Et₃N = 95/5/0.1) to give 4e' as a yellowish solid (886.0 mg, 90% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.54-1.61 (m, 2H), 1.88 (br, 2H), 2.09 (br, 1H), 2.37 (br, 1H), 2.60-2.64 (m, 1H), 2.87-2.89 (m, 1H), 3.09 (br, 1H), 3.16-3.24 (m, 1H), 3.61 (br, 1H), 4.45 (s, 2H), 4.86-4.89 (m, 1H), 4.95 (s, 1H), 5.40 (brs, 1H), 5.56-5.68 (m, 2H), 7.32 (d, *J* = 9.0 Hz, 1H), 7.44-7.60 (m, 5H), 8.04 (d, *J* = 9.0 Hz, 1H), 8.09 (s, 1H), 8.70 (d, *J* = 4.2 Hz, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -81.3 (t, *J* = 10.2 Hz, 3F), -111.1 (t, *J* = 15.0 Hz, 2F), -121.7 (s, 2F), -122.3 (s, 6F), -123.2 (s, 2F), -126.6 (s, 2F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 20.0, 27.0, 27.7, 39.3, 43.4, 56.4, 59.5, 70.2, 79.0, 105.7, 106-120 (m, C₈F₁₇), 115.0, 117.5, 123.2, 126.97, 127.01, 127.8, 128.2 (t, *J* = 25.7 Hz), 131.5, 140.6, 142.1, 143.2, 143.6, 146.5, 157.2 ; IR (KBr) 2942, 1618, 1509, 1470, 1419, 1213, 1150, 1114, 855, 822, 659 cm⁻¹ ; mp = 95-98 °C ; MS (ESI, *m*/*z*) 819.3 [M+H]⁺ ; HRMS calcd. for [C₃₄H₂₇F₁₇N₂O₂+H]⁺ : 819.1879 Found : 819.1886 ; [α]_D²⁵ = -13.0 (c = 4.62, CHCl₃)

3. Preparation of 7-*tert*-Butyl-1*H* indole (1n)⁵:

2-*tert*-Butylnitrobenzene (310mg, 1.73 mmol) was dissolved in dry THF (10.0 mL). The resulting solution was cooled to -45 °C. Then a 1.0 M THF solution of vinylmagnesium bromide (5.2 mL, 5.19 mmol) was added at -45 °C under nitrogen atmosphere over 10 minitues. After the addion was complete, the raction mixture was stirred at -45 °C for 1 h and then it warmed to 0 °C and stirred at 0 °C for 2 h. After dilution with sat. NH4Cl aq, aqueous layer was extracted with Et₂O, and the combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane = 100) to give 1n as a brown solid (127.4 mg, 43% yield).

¹H NMR (CDCl₃, 300 MHz) δ 1.52 (s, 9H), 6.57 (t, *J* = 2.4 Hz, 1H), 7.05-7.15 (m, 2H), 7.22 (t, *J* = 3.0 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 8.30 (brs, 1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 30.4, 34.5, 102.6, 118.6, 119.0, 119.8, 123.3, 128.8, 133.3, 133.5 ; IR (KBr) 3425, 2970, 2953, 1491, 1418, 1365, 1340, 1099, 1068, 1024, 797, 742 cm⁻¹ ; mp = 63-66 °C ; MS (EI, *m*/*z*) 173 (M⁺), HRMS calcd. for C₁₂H₁₅N⁺ : 173.1204 Found : 173.1214

4. General experimental procedure for the F-C alkylation of indoles with ethyl trifluoropyruvate in Solkane[®] 365mfc:

Catalyst free F-C alkylation (Racemic synthesis):

To a stirred solution of 1 (0.20 mmol) in Solkane[®] 365mfc (0.5 mL), ethyl trifluoropyruvate (29.2 μ L, 0.22 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 0.5 - 2.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 80/20) to give 2 as a solid or liquid.

Catalytic enantioselective F-C alkylation (Asymmetric synthesis):

To a stirred solution of 1 (0.10 mmol) and catalyst 4e or 4e' (8.2 mg, 10 mol%) in Solkane[®] 365mfc (0.3 mL), ethyl trifluoropyruvate (14.6 μ L, 0.11 mmol) in 0.2 mL Solkane[®] 365mfc was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 80/20) give (*S*)-2 or (*R*)-2 as a solid or liquid.

3,3,3-Trifluoro-2-hydroxy-2-(1H-indol-3-yl)-propionic acid ethyl ester (2a)⁶:

Racemic synthesis: (52.9 mg, 92%) ; Asymmetric synthesis: (*S*)-2a (26.6 mg, 93%, 72% ee), (*R*)-2a (28.0 mg, 98%, 71% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.33 (t, *J* = 7.2 Hz, 3H), 4.25-4.53 (m, 2H), 4.40 (s, 1H), 7.09-7.25 (m, 2H), 7.31-7.35 (m, 1H), 7.41 (d, *J* = 2.8 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.24 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.5 (s, 3F) ; IR (KBr) 3417, 3314, 1739, 1461, 1308, 1258, 1228, 1176, 1097, 1008, 756 cm⁻¹ ; MS (ESI, *m/z*) 310.2 [M+Na]⁺ ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 55.4 min, τ_{min} = 67.6 min) ; (*S*)-2a [α]_D²⁵ = +11.7 (c = 0.31, CHCl₃, 72% ee) ; (*R*)-2a [α]_D²⁵ = -12.7 (c = 0.44, CHCl₃, 71% ee)

3,3,3-Trifluoro-2-hydroxy-2-(2-methyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2b)⁷:

Racemic synthesis: (54.9 mg, 91%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.32 (t, J = 7.2 Hz, 3H), 2.48 (s, 3H), 3.98 (s, 1H), 4.24-4.50 (m, 2H), 7.06-7.24 (m, 3H), 7.78 (d, J = 8.6 Hz, 1H), 7.96 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.3 (s, 3F) ; IR (KBr) 3374, 2967, 1722, 1460, 1432, 1298, 1161, 1087, 944, 903, 741 cm⁻¹ ; MS (ESI, m/z) 324.2 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(2-phenyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2c)⁸:

Racemic synthesis: (60.7 mg, 84%); ¹H NMR (CDCl₃, 300 MHz) δ 1.10 (t, *J* = 7.2 Hz, 3H), 3.54 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.73 (s, 1H), 3.89 (dq, *J* = 10.7, 7.5 Hz, 1H), 7.17-7.28 (m, 2H), 7.33-7.36 (m, 1H), 7.40-7.47 (m, 5H), 8.05 (d, *J* = 8.1 Hz, 1H), 8.16 (brs, 1H); ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -75.1 (s, 3F); IR (KBr) 3374, 3328, 1729, 1455, 1373, 1303, 1168, 1097, 1016, 995, 920, 746, 714, 702 cm⁻¹; MS (ESI, *m/z*) 386.1 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(4-methyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2d):

Racemic synthesis: (49.9 mg, 83%) ; Asymmetric synthesis: (*S*)-2d (25.2 mg, 84%, 48% ee), (*R*)-2d (23.5 mg, 78 %, 43% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz, 200 MHz) δ 1.20 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz), 3Hz (s, 3H), 4.20 (dq, *J* = 10.6, 7.2 Hz), 3Hz (s, 3H), 3Hz (s, 3H), 3Hz (s, 3Hz) (

1H), 4.38 (s, 1H), 4.39 (dq, J = 10.6, 7.2 Hz, 1H), 6.88-6.92 (m, 1H), 7.07-7.10 (m, 2H), 7.25-7.27 (m, 1H), 8.16 (brs, 1H); ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -74.7 (s, 3F); ¹³C NMR (CDCl₃, 150.9 MHz) δ 14.2, 22.4, 64.5, 77.5 (q, J = 30.2 Hz), 108.6, 109.7, 123.3, 123.4, 124.3 (q, J = 288.2 Hz), 125.4, 125.4, 130.8, 137.2, 171.1; IR (KBr) 3439, 3331, 1724, 1464, 1442, 1231, 1186, 1109, 1007, 907, 756, 747 cm⁻¹; mp = 137-140 °C; MS (EI, m/z) 301 (M⁺); HRMS calcd. for C₁₄H₁₄F₃NO₃⁺ : 301.0926 Found : 301.0922 ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 54.0$ min, $\tau_{min} = 59.5$ min); (*S*)-2d [α]_D²⁵ = +24.6 (c = 0.58, CHCl₃, 48% ee); (*R*)-2d [α]_D²⁵ = -10.9 (c = 0.62, CHCl₃, 43% ee)

3,3,3-Trifluoro-2-hydroxy-2-(5-methyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2e)⁶:

Racemic synthesis: (58.0 mg, 96%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.34 (t, *J* = 7.2 Hz, 3H), 2.44 (s, 3H), 4.25-4.53 (m, 2H), 4.37 (s, 1H), 7.03 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.37 (d, *J* = 2.4 Hz, 1H), 7.66 (s, 1H), 8.14 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.5 (s, 3F) ; IR (KBr) 3397, 3333, 2988, 2919, 1729, 1302, 1262, 1228, 1173, 1102, 1008, 798 cm⁻¹ ; MS (ESI, *m/z*) 324.2 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(5-methoxy-1*H*-indol-3-yl)-propionic acid ethyl ester (2f)⁶:

Racemic synthesis: (60.8 mg, 96%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.34 (t, J = 7.2 Hz, 3H), 3.83, (s, 3H), 4.26-4.53 (m, 2H), 4.39 (s, 1H), 6.87 (dd, J = 8.8, 2.4 Hz, 1H), 7.19-7.23 (m, 1H), 7.35 (d, J = 2.2 Hz, 1H), 7.37 (d, J = 2.8 Hz, 1H), 8.21 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.6 (s, 3F) ; IR (KBr) 3418, 3348, 2986, 2938, 2832, 1732, 1493, 1441, 1300, 1219, 1174, 1108, 838, 805 cm⁻¹ ; MS (ESI, *m/z*) 340.2 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(5-fluoro-1*H*-indol-3-yl)-propionic acid ethyl ester (2g)⁶:

Racemic synthesis: (54.7 mg, 90%) ; Asymmetric synthesis: (*S*)-2g (29.9 mg, 98%, 70% ee), (*R*)-2g (30.2 mg, 99%, 56% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.35 (t, *J* = 7.2 Hz, 3H), 4.28-4.54 (m, 2H), 4.41 (s, 1H), 6.95 (dt, *J* = 9.0, 2.6 Hz, 1H), 7.25 (dd, *J* = 8.6, 5.0 Hz, 1H), 7.47 (d, *J* = 2.4 Hz, 1H), 7.57 (dd, *J* = 10.5, 2.4 Hz, 1H), 8.31 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.8 (s, 3F), -122.6 (dt, *J* = 10.5, 4.0 Hz, 1F) ; IR (KBr) 3389, 2984, 2908, 1731, 1280, 1179, 1096, 1021, 908, 805, 682 cm⁻¹ ; MS (ESI, *m/z*) 328.2 [M+Na]⁺ ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 44.6 min, τ_{min} = 51.9 min) ; (*S*)-2g [α]_D²⁵ = +10.6 (c = 0.24, CHCl₃, 70% ee) ; (*R*)-2g [α]_D²⁵ = -16.5 (c = 0.40,

CHCl₃, 56% ee)

3,3,3-Trifluoro-2-hydroxy-2-(5-chloro-1*H*-indol-3-yl)-propionic acid ethyl ester (2h)⁶:

Racemic synthesis: (58.2 mg, 91%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.36 (t, *J* = 7.2 Hz, 3H), 4.28-4.54 (m, 2H), 4.43 (s, 1H), 7.15 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 1H), 7.44 (d, *J* = 2.6 Hz, 1H), 7.90 (d, *J* = 1.2 Hz, 1H), 8.34 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.9 (s, 3F) ; IR (KBr) 3331, 2984, 1732, 1469, 1300, 1256, 1172, 1106, 1094, 1024, 914 ; 804 cm⁻¹ ; MS (ESI, *m/z*) 344.1, 346.1 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(5-bromo-1*H*-indol-3-yl)-propionic acid ethyl ester (2i)⁶:

Racemic synthesis : (64.9 mg, 89%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.36 (t, *J* = 7.2 Hz, 3H), 4.28-4.53 (m, 2H), 4.44 (s, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.28 (dd, *J* = 8.8, 1.8 Hz, 1H), 7.42 (d, *J* = 2.6 Hz, 1H), 8.06 (d, *J* = 1.0 Hz, 1H), 8.36 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.9 (s, 3F) ; IR (KBr) 3334, 2982, 1732, 1463, 1389, 1371, 1302, 1256, 1172, 1100, 1024, 803 cm⁻¹ ; MS (ESI, *m/z*) 388.1, 390.1 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(5-iodo-1*H*-indol-3-yl)-propionic acid ethyl ester (2j)⁶:

Racemic synthesis : (78.3 mg, 95%) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.38 (t, *J* = 7.2 Hz, 3H), 4.33-4.52 (m, 3H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.44 (d, *J* = 2.7 Hz, 1H), 7.47 (dd, *J* = 8.7, 1.8 Hz, 1H), 8.29 (s, 1H), 8.34 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.9 (s, 3F) ; IR (KBr) 3334, 1731, 1456, 1388, 1301, 1256, 1171, 1085, 1024, 910, 881, 804 cm⁻¹ ; MS (ESI, *m/z*) 436.1 [M+Na]⁺

3,3,3-Trifluoro-2-hydroxy-2-(6-methyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2k):

Racemic synthesis : (59.7 mg, 99%) ; Asymmetric synthesis : (*S*)-2k (26.5 mg, 88%, 55% ee), (*R*)-2k (27.4 mg, 91 %, 63% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 2.43 (s, 3H), 4.23-4.52 (m, 2H), 4.37 (s, 1H), 6.95-6.99 (m, 1H), 7.08 (s, 1H), 7.31 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 2.43 (s, 3H), 4.23-4.52 (m, 2H), 4.37 (s, 1H), 6.95-6.99 (m, 1H), 7.08 (s, 1H), 7.31 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 4.37 (br, 1H), 7.08 (s, 1H), 7.31 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 4.37 (br, 1H), 7.08 (s, 1H), 7.31 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 4.37 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 7.31 (br, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 7.31 (br, 1H), 7.74 (br, *J* = 8.2 Hz, 1H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H), 8.07 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 200 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3H) δ 1.32 (t, *J* = 7.2 Hz, 3H) δ 1.32 (t, *J* = 7.2 Hz) δ 1.32 (t

188.2 MHz) δ -77.2 (s, 3F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 13.8, 21.5, 64.2, 76.7 (q, J = 31.7 Hz), 108.2, 111.3, 120.5, 122.3, 122.7, 123.5 (q, J = 286.7 Hz), 123.8, 132.5, 136.7, 169.4 ; IR (KBr) 3417, 3343, 2988, 2925, 1742, 1455, 1370, 1034, 1255, 1101, 1010, 909, 861, 810 cm⁻¹ ; mp = 98-101 °C ; MS (EI, m/z) 301 (M⁺) ; HRMS calcd. for C₁₄H₁₄F₃NO₃⁺ : 301.0926 Found : 301.0953 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 10.8$ min, $\tau_{min} = 9.2$ min) ; (*S*)-2k [α]_D²⁵ = +7.3 (c = 0.35, CHCl₃, 55% ee) ; (*R*)-2k [α]_D²⁵ = -12.4 (c = 0.25, CHCl₃, 63% ee)

3,3,3-Trifluoro-2-hydroxy-2-(7-methyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2l):

Racemic synthesis : (60.5 mg, 99%) ; Asymmetric synthesis : (*S*)-21 (27.7 mg, 92%, 85% ee), (*R*)-2l (29.8 mg, 99%, 77% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.34 (t, *J* = 7.5 Hz, 3H), 2.48 (s, 3H), 4.29-4.51 (m, 2H), 4.39 (s, 1H), 7.02-7.11 (m, 2H), 7.48 (d, *J* = 2.7 Hz, 1H), 7.74 (d, *J* = 7.5 Hz, 1H), 8.22 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -77.2 (s, 3F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 13.9, 16.4, 64.2, 76.7 (q, *J* = 31.7 Hz), 109.1, 118.8, 120.5, 120.7, 123.1, 123.5 (q, *J* = 286.7 Hz), 124.1, 124.6, 135.9, 169.4 ; IR (KBr) 3437, 3324, 1737, 1306, 1227, 1171, 1113, 1083, 787, 748, 692 cm⁻¹ ; mp = 84-87 °C ; MS (EI, *m/z*) 301 (M⁺) ; HRMS calcd. for C₁₄H₁₄F₃NO₃⁺ : 301.0926 Found : 301.0951 ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 24.1 min, τ_{min} = 35.2 min) ; (*S*)-21 [α]_D²⁵ = +16.2 (c = 0.32, CHCl₃, 85% ee) ; (*R*)-21 [α]_D²⁵ = -22.0 (c = 0.28, CHCl₃, 77% ee)

3,3,3-Trifluoro-2-hydroxy-2-(7-ethyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2m):

Racemic synthesis : (60.9 mg, 97%) ; Asymmetric synthesis : (*S*)-2m (30.7 mg, 97%, 81% ee), (*R*)-2m (28.9 mg, 92%, 82% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.29-1.35 (m, 6H), 2.80 (q, *J* = 7.8 Hz, 2H), 4.26-4.49 (m, 2H), 4.41 (s, 1H), 7.05 (d, *J* = 6.9 Hz, 1 H), 7.11 (t, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 2.4 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 8.25 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -77.1 (s, 3F) ; IR (KBr) 3437, 3349, 1724, 1439, 1301, 1255, 1229, 1191, 1097, 1008, 748, 693 cm⁻¹ ; MS (ESI, *m/z*) 338.2 [M+Na]⁺ ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τ maj = 20.7 min, τ min = 35.1 min) ; (*S*)-2m [α]_D²⁵ = +8.9 (c = 0.23, CHCl₃, 81% ee) ; (*R*)-2m [α]_D²⁵ = -20.8 (c = 0.29, CHCl₃, 82% ee)

3,3,3-Trifluoro-2-hydroxy-2-(7-tert-butyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2n):

Racemic synthesis (Half scale of general procedure) : (32.1 mg, 94%) ; Asymmetric synthesis : (*S*)-2n (27.7 mg, 81%, 79% ee), (*R*)-2n (29.4 mg, 86%, 80% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.34 (t, *J* = 7.2 Hz, 3H), 1.50 (s, 9H), 4.29-4.52 (m, 2H), 4.38 (s, 1H), 7.10 (t, *J* = 7.8 Hz, 1H), 7.16 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.47 (d, *J* = 2.7 Hz, 1H), 7.77 (d, *J* = 7.8 H, 1H), 8.42 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -77.0 (s, 3F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 13.9, 30.4, 34.5, 64.2, 76.7 (q, *J* = 31.7 Hz), 108.5, 119.2, 119.4, 120.5, 123.5, 123.6 (q, *J* = 286.7 Hz), 126.1, 133.5, 134.1, 169.5 ; IR (neat) 3459, 2969, 1733, 1423, 1368, 1222, 1175, 1112, 1014, 900, 748, 690 cm⁻¹ ; MS (EI, *m/z*) 343 (M⁺), HRMS calcd. for $C_{17}H_{20}F_3NO_3^+$: 343.1395 Found : 343.1387 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 25.9 min, τ_{min} = 23.4 min) ; (*S*)-2n [α]_D²⁵ = +7.5 (c = 0.34, CHCl₃, 79% ee) ; (*R*)-2n [α]_D²⁵ = -9.5 (c = 0.41, CHCl₃, 80% ee)

3,3,3-Trifluoro-2-hydroxy-2-(7-bromo-1*H*-indol-3-yl)-propionic acid ethyl ester (20):

Racemic synthesis : (62.0 mg, 85%) ; Asymmetric synthesis : (*S*)-2o (29.4 mg, 80%, 79% ee), (*R*)-2o (28.8 mg, 79%, 58% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.35 (t, *J* = 7.2 Hz, 3H), 4.32-4.52 (m, 2H), 4.43 (s, 1H), 7.05 (t, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.56 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 8.50 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -77.5 (s, 3F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 13.9, 64.4, 76.6 (q, *J* = 33.2 Hz), 104.8, 110.0, 120.7, 121.7, 123.3 (q, *J* = 286.7 Hz), 124.9, 125.0, 126.3, 135.0, 169.1 ; IR (neat) 3428, 2984, 1738, 1434, 1286, 1227, 1207, 1179, 1109, 1013, 782, 739, 689 cm⁻¹ ; MS (EI, *m/z*) 365, 367 (M⁺), HRMS calcd. for $C_{13}H_{11}BrF_{3}NO_{3}^{+}$: 364.9874 Found : 364.9868 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 20.5 min, τ_{min} = 17.4 min) ; (*S*)-20 [α]_D²⁵ = +13.6 (c = 0.30, CHCl₃, 79% ee) ; (*R*)-20 [α]_D²⁵ = -23.4 (c = 0.42, CHCl₃, 58% ee)

3,3,3-Trifluoro-2-hydroxy-2-(7-phenyl-1*H*-indol-3-yl)-propionic acid ethyl ester (2p):

Racemic synthesis : (69.8 mg, 96%) ; Asymmetric synthesis : (S)-2p (34.4 mg, 95%, 75% ee), (R)-2p (33.6 mg,

93 %, 74% ee) ;¹H NMR (CDCl₃, 300 MHz) δ 1.36 (t, *J* = 7.2 Hz, 3H), 4.34-4.51 (m, 2H), 4.42 (s, 1H), 7.22-7.25 (m, 2H), 7.38-7.44 (m, 1H), 7.48-7.53 (m, 3H), 7.58-7.61 (m, 2H), 7.88-7.94 (m, 1H), 8.52 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 282.3 MHz) δ -77.2 (s, 3F) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 13.9, 64.2, 76.7 (q, *J* = 31.7 Hz), 109.1, 120.4, 121.0, 122.6, 123.5 (q, *J* = 285.2 Hz), 124.6, 125.5, 125.9, 127.6, 128.2, 129.2, 134.3, 138.6, 169.3 ; IR (neat) 3439, 1736, 1428, 1306, 1253, 1226, 1177, 1013, 761, 703 cm⁻¹ ; MS (EI, *m/z*) 363 (M⁺), HRMS calcd. for C₁₉H₁₆F₃NO₃⁺ : 363.1082 Found : 363.1086 ; The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 21.5 min, τ_{min} = 25.1 min) ; (*S*)-2p [α]_D²⁵ = +21.0 (c = 0.33, CHCl₃, 75% ee) ; (*R*)-2p [α]_D²⁵ = -23.0 (c = 0.24, CHCl₃, 74% ee)

3,3,3-Trifluoro-2-hydroxy-2-(1-methyl-indol-3-yl)-propionic acid ethyl ester (2q)⁸:

Racemic synthesis : (55.0 mg, 91%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.36 (t, J = 7.2 Hz, 3H), 3.77 (s, 3H), 4.25-4.53 (m, 2H), 4.35 (s, 1H), 7.09-7.31 (m, 4H), 7.86 (d, J = 8.0 Hz, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -76.6 (s, 3F) ; IR (KBr) 3474, 1731, 1541, 1474, 1369, 1307, 1231, 1184, 1009, 986, 746 cm⁻¹ ; MS (ESI, m/z) 324.2 [M+Na]⁺

5. General experimental procedure for the F-C alkylation of indoles with ethyl glyoxylate in Solkane[®] 365mfc:

Catalyst free Friedel-Crafts alkylation of indoles (Racemic synthesis):

To a stirred solution of 1 (0.40 mmol) in Solkane[®] 365mfc (0.5 mL), ethyl glyoxylate (39.6 μ L, 0.20 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1.0 - 24.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 70/30) give 3 as a solid or liquid.

Catalytic enantioselective Friedel-Crafts alkylation of indoles (Asymmetric synthesis):

To a stirred solution of 1 (0.20 mmol) and catalyst 4e or 4e' (8.2 mg, 10 mol%) in Solkane[®] 365mfc (0.5 mL), ethyl glyoxylate (19.8 μ L, 0.10 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1.0 – 3.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 70/30) give (+)-3 or (-)-3 as a solid or liquid.

Racemic synthesis : (31.8 mg, 73%) ; Asymmetric synthesis : (+)-3a (17.6 mg, 80%, 90% ee), (-)-3a (20.2 mg, 92%, 92% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (t, *J* = 7.2 Hz, 3H), 3.28 (d, *J* = 6.0 Hz, 1H), 4.13-4.36 (m, 2H), 5.47 (d, *J* = 5.7 Hz, 1H), 7.12-7.25 (m, 3H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 8.16 (brs, 1H) ; IR (KBr) 3397, 2981, 1723, 1458, 1424, 1339, 1227, 1303, 1053, 744 cm⁻¹ ; MS (ESI, *m/z*) 242.2 [M+Na]⁺ ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 21.6$ min, $\tau_{min} = 30.0$ min) ; (+)-3a [α]_D²⁵ = +86.8 (c = 0.37, CHCl₃, 90 % ee) ; (-)-3a [α]_D²⁵ = -87.0 (c = 0.50, CHCl₃, 92 % ee)

Hydroxy-(2-methyl-1*H*-indol-3-yl)-acetic acid ethyl ester (3b):

Racemic synthesis : (41.7 mg, 89%) ; Asymmetric synthesis : (+)-3b (23.3 mg, 99%, 85% ee), (-)-3b (23.3 mg, 99%, 85% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.18 (t, J = 7.5 Hz, 3H), 2.44 (s, 3H), 3.33 (brs, 1H), 4.09-4.33 (m, 2H), 5.41 (s, 1H), 7.04-7.15 (m, 2H), 7.23 (s, 1H), 7.56 (d, J = 7.5Hz, 1H), 7.96 (brs, 1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 11.8, 14.1, 62.0, 66.4, 109.0, 110.4, 118.4, 120.0, 121.5, 126.4, 133.9, 135.1, 174.4 ; IR (neat) 3396, 2981, 2925, 1731, 1462, 1259, 1213, 1057, 1019, 745 cm⁻¹ ; MS (EI, m/z) 233 (M⁺), HRMS calcd. for C₁₃H₁₅NO₃⁺ : 233.1052 Found : 233.1072 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 17.6$ min, $\tau_{min} = 22.4$ min) ; (+)-3b [α]_D²⁵ = +68.7 (c = 0.39, CHCl₃, 85 % ee) ; (-)-3b [α]_D²⁵ = -22.8 (c = 0.70, CHCl₃, 85 % ee)

Hydroxy-(4-methyl-1*H*-indol-3-yl)-acetic acid ethyl ester (3d):

Racemic synthesis : (25.9 mg, 56%) ; Asymmetric synthesis : (+)-3d (18.0 mg, 77%, 89% ee), (-)-3d (19.5 mg, 84%, 92% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.27 (t, *J* = 7.2 Hz, 3H), 2.74 (s, 3H), 3.06 (d, *J* = 6.6 Hz, 1H), 4.17-4.38 (m, 2H), 5.68 (d, *J* = 6.6 Hz, 1H), 6.92 (d, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 8.1 Hz, 1H), 7.15 (s, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 8.19 (brs,1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 14.1, 20.3, 61.8, 67.3, 109.2, 114.9, 121.9, 122.7, 123.1, 124.8, 130.6, 136.6, 174.4 ; IR (KBr) 3480, 3301, 2979, 1733, 1375, 1349, 1211, 1055, 1019, 750 cm⁻¹ ; mp = 123-126 °C ; MS (EI, *m*/*z*) 233 (M⁺), HRMS calcd. for $C_{13}H_{15}NO_3^+$: 233.1052 Found : 233.1075 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 19.3 min, τ_{min} = 30.7 min) ; (+)-3d [α]_D²⁵ = +85.2 (c = 0.40, CHCl₃, 89 % ee) ; (-)-3d [α]_D²⁵ =

-86.6 (c = 0.49, CHCl₃, 92 % ee)

Hydroxy-(5-methyl-1*H*-indol-3-yl)-acetic acid ethyl ester (3e)⁹:

Racemic synthesis : (30.9 mg, 66%) ; Asymmetric synthesis : (+)-3e (23.3 mg, 99%, 87% ee), (-)-3e (21.2 mg, 91%, 91% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.23 (t, *J* = 7.2 Hz, 3H), 2.44 (s, 3H), 3.22 (d, *J* = 6.0 Hz, 1H), 4.09-4.38 (m, 2H), 5.43 (d, *J* = 5.6 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.18-7.26 (m, 2H), 7.486-7.493 (m, 1H), 8.04 (brs, 1H) ; IR (KBr) 3536, 3407, 1729, 1305, 1281, 1259, 1201, 1078, 1045, 602 cm⁻¹ ; MS (ESI, *m/z*) 256.0 [M+Na]⁺ ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 18.7 min, τ_{min} = 24.0 min) ; (+)-3e [α]_D²⁵ = +76.9 (c = 0.50, CHCl₃, 91% ee)

Hydroxy-(5-methoxy-1*H*-indol-3-yl)-acetic acid ethyl ester (3f)⁹:

Racemic synthesis : (39.4 mg, 79%) ; Asymmetric synthesis : (+)-3f (24.0 mg, 96%, 83% ee), (-)-3f (22.9 mg, 92%, 88% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.24 (t, *J* = 7.2 Hz, 3H), 3.23 (d, *J* = 6.0 Hz, 1H), 3.85 (s, 3H), 4.10-4.38 (m, 2H), 5.43 (d, *J* = 5.6 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.14-7.26 (m, 3H), 8.06 (brs, 1H) ; IR (neat) 3403, 2982, 2939, 1731, 1487, 1456, 1442, 1213, 1069, 801 cm⁻¹ ; MS (ESI, *m/z*) 272.2 [M+Na]⁺ ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 31.4$ min, $\tau_{min} = 37.5$ min) ; (+)-3f $[\alpha]_D^{25} = +73.9$ (c = 0.61, CHCl₃, 83 % ee) ; (-)-3f $[\alpha]_D^{25} = -83.6$ (c = 0.62, CHCl₃, 88 % ee)

Hydroxy-(5-fluoro-1*H*-indol-3-yl)-acetic acid ethyl ester (3g)⁹:

Racemic synthesis : (26.6 mg, 56%) ; Asymmetric synthesis : (+)-3g (17.6 mg, 74%, 89% ee), (-)-3g (21.3 mg, 90%, 92% ee) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.24 (t, *J* = 7.2 Hz, 3H), 3.30 (d, *J* = 5.2 Hz, 1H), 4.11-4.39 (m, 2H), 5.41 (d, *J* = 5.2 Hz, 1H), 6.95 (dt, *J* = 9.2, 2.6 Hz, 1H), 7.24-7.39 (m, 3H), 8.16 (brs, 1H) ; ¹⁹F NMR (CDCl₃, 188.2 MHz) δ -123.1 (dt, *J* = 9.2, 4.2 Hz, 1F) ; IR (KBr) 3502, 3334, 1718, 1586, 1487, 1459, 1427, 1276, 1174, 1062, 1017, 810 cm⁻¹ ; MS (ESI, *m*/*z*) 260.0 [M+Na]⁺ ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 19.7$ min, $\tau_{min} = 27.6$ min) ; (+)-3g [α]_D²⁵ = +94.4 (c = 0.42, CHCl₃, 89 % ee) ; (-)-3g [α]_D²⁵ = -88.4 (c = 0.48, CHCl₃, 92 % ee)

Hydroxy-(5-chloro-1*H*-indol-3-yl)-acetic acid ethyl ester (3h)⁹:

Racemic synthesis : (27.5 mg, 54%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.24 (t, *J* = 7.2 Hz, 3H), 3.32 (d, *J* = 5.6 Hz, 1H), 4.11-4.39 (m, 2H), 5.41 (d, *J* = 5.4Hz, 1H), 7.15 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.25-7.30 (m, 2H), 7.69 (d, *J* = 1.8 Hz, 1H), 8.19 (brs, 1H) ; IR (KBr) 3505, 3283, 2988, 1737, 1456, 1214, 1110, 804, 756, 699 cm⁻¹ ; MS (ESI, *m*/*z*) 276.0, 278.0 [M+Na]⁺

Hydroxy-(5-bromo-1*H*-indol-3-yl)-acetic acid ethyl ester (3i)⁹:

Racemic synthesis : (48.6 mg, 82%) ; ¹H NMR (CDCl₃, 200 MHz) δ 1.25 (t, *J* = 7.0 Hz, 3H), 3.31 (d, *J* = 5.6 Hz, 1H), 4.11-4.39 (m, 2H), 5.41 (d, *J* = 5.4 Hz, 1H), 7.20-7.32 (m, 3H), 7.85-7.86 (m, 1H), 8.17 (brs, 1H) ; IR (KBr) 3503, 3279, 2984, 2904, 1736, 1455, 1214, 1106, 869, 801, 755, 685, 607 cm⁻¹ ; MS (ESI, *m/z*) 320.1, 322.1 [M+Na]⁺

Hydroxy-(5-iodo-1*H*-indol-3-yl)-acetic acid ethyl ester (3j)¹⁰:

Racemic synthesis : (58.0 mg, 84%) ¹H NMR (CDCl₃, 200 MHz) δ 1.26 (t, J = 7.2 Hz, 3H), 3.30 (d, J = 5.6 Hz, 1H), 4.11-4.39 (m, 2H), 5.41 (d, J = 5.2 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.46 (dd, J = 8.6, 1.6 Hz, 1H), 8.06 (d, J = 1.0 Hz, 1H), 8.17 (brs, 1H) ; IR (KBr) 3502, 3278, 2979, 1735, 1456, 1241, 1214, 1104, 871, 799, 604 cm⁻¹ ; MS (ESI, m/z) 368.1 [M+Na]⁺ ;

Hydroxy-(5-methyl-1*H*-indol-carboxylate-3-yl)-acetic acid ethyl ester (3r):

Racemic synthesis : (15.9 mg, 29%) ; Asymmetric synthesis ((+)-3r is twice scale of general procedure) : (+)-3r (4.5 mg, 8%, 81% ee), (-)-3r (6.8 mg, 25%, 90% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.25 (t, *J* = 7.2 Hz, 3H), 3.37 (d, *J* = 5.4 Hz, 1H), 3.94 (s, 3H), 4.15-4.37 (m, 2H), 5.52 (d, *J* = 5.4 Hz, 1H), 7.34 (d, *J* = 2.4 Hz, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 7.94 (dd, *J* = 8.4, 1.5 Hz, 1H), 8.37 (brs, 1H), 8.51 (d, *J* = 0.6 Hz, 1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 14.1, 51.9, 62.3, 67.1, 111.0, 115.6, 122.3, 122.7, 124.0, 124.2, 125.0, 139.0, 168.0, 173.7 ; IR (KBr)

3421, 3302, 1742, 1679, 1358, 1293, 1259, 1123, 978, 756 cm⁻¹; mp = 144-147 °C; MS (EI, *m/z*) 277 (M⁺), HRMS calcd. for $C_{14}H_{15}NO_5^+$: 277.0950 Found : 277.0958 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 29.4$ min, $\tau_{min} = 40.6$ min); (+)-3r $[\alpha]_D^{25} = +65.7$ (c = 0.15, CHCl₃, 81 % ee); (-)-3k $[\alpha]_D^{25} = -64.3$ (c = 0.12, CHCl₃, 90 % ee)

Hydroxy-(6-methyl-1*H*-indol-3-yl)-acetic acid ethyl ester (3k):

Racemic synthesis (Half scale of general procedure) : (17.5 mg, 75%) ; Asymmetric synthesis (Half scale of general procedure) : (+)-3k (9.2 mg, 79%, 89% ee), (-)-3k (11.7 mg, 99%, 92% ee) ; ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (t, *J* = 7.5 Hz, 3H), 2.45 (s, 3H), 3.26 (d, *J* = 5.7 Hz, 1H), 4.11-4.35 (m, 2H), 5.44 (d, *J* = 5.7 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 1H), 7.14-7.16 (m, 2H), 7.59 (d, *J* = 8.1 Hz, 1H), 8.04 (brs, 1H) ; ¹³C NMR (CDCl₃, 150.9 MHz) δ 14.1, 21.6, 62.0, 67.3, 111.3, 113.7, 119.0, 121.9, 122.6, 123.1, 132.3, 136.9, 174.1 ; IR (neat) 3403, 1732, 1628, 1547, 1455, 1230, 1200, 1095, 1077, 1043, 803 cm⁻¹ ; MS (EI, *m*/*z*) 233 (M⁺), HRMS calcd. for C₁₃H₁₅NO₃⁺ : 233.1052 Found : 233.1058 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 19.1$ min, $\tau_{min} = 25.0$ min) ; (+)-3k [α]_D²⁵ = +82.0 (c = 0.23, CHCl₃, 89 % ee) ; (-)-3k [α]_D²⁵ = -61.4 (c = 0.45, CHCl₃, 92 % ee)

Hydroxy-(7-methyl-1*H*-indol-3-yl)-acetic acid ethyl ester (3l):

Racemic synthesis : (33.9 mg, 73%) ; Asymmetric synthesis : (+)-3l (23.4 mg, 99%, 94% ee), (-)-3l (23.4 mg, 99%, 96% ee) ;¹H NMR (CDCl₃, 300 MHz) δ 1.23 (t, J = 7.2 Hz, 3H), 2.49 (s, 3H), 3.27 (d, J = 5.7 Hz, 1H), 4.12-4.36 (m, 2H), 5.46 (d, J = 5.7 Hz, 1H), 7.01-7.10 (m, 2H), 7.27 (d, J = 2.7 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 8.11 (brs, 1H), ¹³C NMR (CDCl₃, 150.9 MHz) δ 14.1, 16.5, 62.0, 67.4, 114.3, 117.1, 120.3, 120.5, 122.9, 123.0, 124.9, 136.0, 174.0 ; IR (KBr) 3348, 1732, 1440, 1228, 1197, 1107, 1062, 785, 751, 670 cm⁻¹ ; mp = 124-127 °C ; MS (EI, *m*/z) 233 (M⁺), HRMS calcd. for C₁₃H₁₅NO₃⁺ : 233.1052 Found : 233.1060 ; The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 19.3$ min, $\tau_{min} = 27.6$ min) ; (+)-31 [α]_D²⁵ = +93.1 (c = 0.58, CHCl₃, 94 % ee) ; (-)-31 [α]_D²⁵ = -100.1 (c = 0.57, CHCl₃, 96 % ee)

6. Catalyst-free and catalytic enantioselective F-C alkylation of 1a with ethyl trifluoropyruvate in Solkane[®] 365/227:

Catalyst-free F-C alkylaion:

To a stirred solution of 1a (23.4 mg, 0.20 mmol) in Solkane[®] 365/227 blend solvent (365/227 = 93/7) (0.5 mL), ethyl trifluoropyruvate (29.2 μ L, 0.22 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 80/20) to give 2a as a white solid (55.6 mg, 97%). ¹H NMR spectrum is completely much with catalyst-free F-C alkylation of 1a with ethyl trifluoropyruvate in Solkane[®] 365mfc.

Catalytic enantioselective F-C alkylation:

To a stirred solution of 1a (23.4 mg, 0.10 mmol) and catalyst 4e or 4e' (8.2 mg, 10 mol%) in Solkane[®] 365/227 blend solvent (365/227 = 93/7) (0.3 mL), ethyl trifluoropyruvate (14.6 μ L, 0.11 mmol) in 0.2 mL Solkane[®] 365/227 blend solvent (365/227 = 93/7) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 80/20) to give (*S*)-2a (26.2 mg, 91%, 73% ee) and (*R*)-2a (25.6 mg, 89%, 72% ee) as a white solid. ¹H NMR spectrum is completely much with catalytic enantioselective F-C alkylation of 1a with ethyl trifluoropyruvate in Solkane[®] 365mfc. The ee of the product was determined by HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 55.4 min, τ_{min} = 65.5 min).

7. Catalyst-free and catalytic enantioselective F-C alkylation of 1a with ethyl glyoxylate in Solkane[®] 365/227:

Catalyst-free F-C alkylaion:

To a stirred solution of **1a** (46.9 mg, 0.40 mmol) in Solkane[®] 365/227 blend solvent (365/227 = 93/7) (0.5 mL), ethyl glyoxylate (39.6 μ L, 0.20 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 70/30) to give **2a** as a white solid (31.3mg, 71%).

Catalytic enantioselective F-C alkylation:

To a stirred solution of **1a** (23.4 mg, 0.20 mmol) and catalyst **4e** or **4e'** (8.2 mg, 10 mol%) in Solkane[®] 365/227 blend solvent (365/227 = 93/7) (0.5 mL), ethyl glyoxylate (19.8 μ L, 0.10 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 1.0 h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography (*n*-hexane/ethyl acetate = 70/30) to give (+)-**3a** (20.1 mg, 92%, 90% ee) and (-)-**3a** (21.0 mg, 96%, 91% ee) as a white solid. The ee of the product was determined by HPLC using an AS-H column (*n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 20.3 min, τ_{min} = 29.9 min).

8. Experimental procedure for the F-C alkylation of indole 1a with ethyl trifluoropyruvate, isolation of 2a with recovering Solkane[®] 365mfc:

To a stirred solution of **1a** (468.6 mg, 4.00 mmol) in Solkane[®] 365mfc (10 mL), ethyl trifluoropyruvate (0.58 mL, 4.40 mmol) was added at room temperature under nitrogen atmosphere. The mixture was stirred at room temperature for 15 min. Then distillation of the reaction mixture gave 8.1 mL (81%) of recovered Solkane[®] 365mfc, and 1.10g (96%) of product **2a** was left. The proton NMR spectrum indicated a pure **2a** compatible with the assigned structure.

9. References:

- 1) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc., 2004, 126, 9906.
- 2) G. Pozzi, I. Colombani, M. Miglioli, F. Montanari, S. Quici, Tetrahedron, 1997, 53, 6145.
- 3) T. Kasahara, Y. Kondo, Chem. Commun., 2006, 891.
- 4) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc., 2009, 131, 1662.
- 5) G. Bartoli, G. Palmieri, M. Bosco, R. Dalpozzo, Tetrahedron Lett., 1989, 30, 2129.
- 6) B. Török, M. Abid, G. London, J. Esquibel, M. Török, S. C. Mhadgut, P. Yan, G. K. Prakas, *Angew. Chem. Int. Ed.*, 2005, **44**, 3086.
- 7) M. Abid, B. Török, Adv. Synth. Catal., 2005, 347, 1797.
- 8) W. Zhuang, N. Gathergood, R. G. Hazell, K. A. Jørgensen, J. Org. Chem., 2001, 66, 1009.
- 9) Y. Hui, Q. Zhang, JJiang, L. Lin, X. Liu, X. Feng, J. Org. Chem., 2009, 74, 6878.
- 10) M. Török, M. Abid, S. C. Mhadgut, B. Török, Biochemistry, 2006, 45, 5377.

10. HPLC chart:

No.	tR (min)	Area (%)	High (%)
1	56.375	49.962	51.493
2	65.400	50.038	48.507

No.	tR (min)	Area (%)	High (%)
1	55.392	85.836	85.698
2	67.617	14.164	14.302

No.	tR (min)	Area (%)	High (%)
1	56.992	14.284	19.583
2	65.550	85.716	80.417

No.	tR (min)	Area (%)	High (%)
1	57.450	49.335	51.902
2	61.383	50.665	48.098

No.	tR (min)	Area (%)	High (%)
1	54.017	74.168	75.168
2	59.533	25.832	24.832

No.	tR (min)	Area (%)	High (%)
1	56.383	28.353	34.566
2	60.050	71.647	65.434

No.	tR (min)	Area (%)	High (%)
1	46.733	49.840	58.307
2	57.567	50.160	41.693

No.	tR (min)	Area (%)	High (%)
1	44.575	85.047	88.875
2	51.933	14.953	13.125

No.	tR (min)	Area (%)	High (%)
1	45.308	21.798	30.404
2	51.000	78.202	69.596

No.	tR (min)	Area (%)	High (%)
1	9.633	50.231	58.755
2	11.408	49.769	41.245

No.	tR (min)	Area (%)	High (%)
1	9.183	22.547	31.365
2	10.833	77.453	68.635

No.	tR (min)	Area (%)	High (%)
1	9.217	81.340	85.137
2	11.142	18.660	14.863

No.	tR (min)	Area (%)	High (%)
1	25.542	49.902	60.743
2	39.908	50.098	39.257

No.	tR (min)	Area (%)	High (%)
1	24.075	92.512	93.941
2	35.150	7.488	6.059

No.	tR (min)	Area (%)	High (%)
1	24.992	11.740	17.382
2	34.983	88.260	82.618

No.	tR (min)	Area (%)	High (%)
1	20.892	49.748	60.294
2	32.658	50.252	39.706

No.	tR (min)	Area (%)	High (%)
1	20.733	90.344	94.178
2	35.142	9.656	5.822

No.	tR (min)	Area (%)	High (%)
1	21.008	9.269	15.739
2	34.700	90.731	84.261

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

No.	tR (min)	Area (%)	High (%)
1	21.108	49.807	56.079
2	25.642	50.193	43.921

No.	tR (min)	Area (%)	High (%)
1	23.375	10.372	15.394
2	25.917	89.628	84.606

No.	tR (min)	Area (%)	High (%)
1	25.925	89.832	89.813
2	29.892	10.168	10.187

No.	tR (min)	Area (%)	High (%)
1	17.792	48.866	60.712
2	20.942	51.134	39.288

No.	tR (min)	Area (%)	High (%)
1	17.425	10.742	15.901
2	20.508	89.258	84.099

No.	tR (min)	Area (%)	High (%)
1	17.542	79.100	83.638
2	21.588	20.900	16.362

No.	tR (min)	Area (%)	High (%)
1	22.375	50.055	53.558
2	25.433	49.945	46.442

No.	tR (min)	Area (%)	High (%)
1	21.500	87.251	88.367
2	25.075	12.749	11.633

No.	tR (min)	Area (%)	High (%)
1	22.925	12.784	15.698
2	25.842	87.216	84.302

No.	tR (min)	Area (%)	High (%)
1	22.933	50.045	60.213
2	31.658	49.955	39.787

No.	tR (min)	Area (%)	High (%)
1	21.600	94.896	96.093
2	29.967	5.104	3.907

No.	tR (min)	Area (%)	High (%)
1	22.217	3.930	6.539
2	30.350	96.070	93.461

No.	tR (min)	Area (%)	High (%)
1	17.533	50.007	57.658
2	21.825	49.993	42.342

No.	tR (min)	Area (%)	High (%)
1	17.608	92.310	93.906
2	22.375	7.690	6.094

No.	tR (min)	Area (%)	High (%)
1	17.900	7.379	11.078
2	21.675	92.621	88.922

No.	tR (min)	Area (%)	High (%)
1	17.692	50.349	63.960
2	28.458	49.651	36.040

No.	tR (min)	Area (%)	High (%)
1	19.292	94.270	95.859
2	30.675	5.730	4.141

No.	tR (min)	Area (%)	High (%)
1	18.133	4.255	6.881
2	27.308	95.745	93.119

No.	tR (min)	Area (%)	High (%)
1	19.025	49.992	57.488
2	23.025	50.008	42.512

No.	tR (min)	Area (%)	High (%)
1	18.733	93.537	94.537
2	23.967	6.466	5.463

No.	tR (min)	Area (%)	High (%)
1	18.992	4.432	6.881
2	22.492	95.568	93.119

No.	tR (min)	Area (%)	High (%)
1	31.442	50.159	57.415
2	36.867	49.841	42.585

No.	tR (min)	Area (%)	High (%)
1	31.383	91.368	92.401
2	37.450	8.632	7.599

No.	tR (min)	Area (%)	High (%)
1	31.475	5.925	9.594
2	35.917	94.075	90.406

No.	tR (min)	Area (%)	High (%)
1	18.508	49.947	57.785
2	24.325	50.053	42.215

No.	tR (min)	Area (%)	High (%)
1	19.675	94.707	95.563
2	27.600	5.293	4.437

No.	tR (min)	Area (%)	High (%)
1	18.733	4.123	6.509
2	24.092	95.877	93.491

No.	tR (min)	Area (%)	High (%)
1	30.192	50.261	59.395
2	40.583	49.739	40.605

No.	tR (min)	Area (%)	High (%)
1	29.442	90.348	92.827
2	40.575	9.652	7.173

No.	tR (min)	Area (%)	High (%)
1	30.517	5.190	7.988
2	40.058	94.810	92.012

No.	tR (min)	Area (%)	High (%)
1	20.300	49.851	58.486
2	25.658	50.149	41.514

No.	tR (min)	Area (%)	High (%)
1	19.108	94.310	95.225
2	24.958	5.690	4.775

No.	tR (min)	Area (%)	High (%)
1	20.750	3.822	5.937
2	25.983	96.178	94.063

No.	tR (min)	Area (%)	High (%)
1	19.675	50.059	58.980
2	27.425	49.941	41.020

No.	tR (min)	Area (%)	High (%)
1	19.308	96.961	97.476
2	27.633	3.039	2.524

No.	tR (min)	Area (%)	High (%)
1	19.883	2.252	4.047
2	26.750	97.748	95.953

Catalytic enantioselective F-C alkylation of 1a with ethyl trifluoropyruvate in Solkane[®] 365/227:

HPLC using an OD-H column (*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm)

No.	tR (min)	Area (%)	High (%)
1	55.400	86.423	83.173
2	65.500	13.577	16.827

	XXI	22-44-	b - CH
		1	
		1	
		1120000	
		The second	
		1 2 E C C C	
		10110	
		1 1	
		den la com	
		100100-0	
		1 1 1	
		1000	
		1	
		1.2.2	
		1	
		100	
		10000	
ALCON STREET		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1			
A		and a start	
and the second second			
The second se		Contract of	
Sector Sector A sector		State of the	
11		1	
		1	
11	1.00	destaura ter	Contraction of the
-/ \			VI
		A Real Property and	
STREET, STREET	INCOME IN COLUMN	NAME AND POST OFFICE ADDRESS OF	Carrier and Carrier and Carrier
	Sec. 1	1000 C	and the second
0	60.0		70.0

No.	tR (min)	Area (%)	High (%)
1	55.225	14.263	21.394
2	61.800	85.737	78.606

Catalytic enantioselective F-C alkylation of 1a with ethyl glyoxylate in Solkane[®] 365/227:

No.	tR (min)	Area (%)	High (%)
1	20.267	94.781	95.565
2	29.908	5.219	4.435

No.	tR (min)	Area (%)	High (%)
1	22.950	4.469	9.399
2	30.583	95.531	90.601

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

11. NMR spectrum chart:

Supplementary Material (ESI) for Green Chemistry This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

