[Supporting Information]

One-Step and Room Temperature Synthesis of Au@Pd Core-Shell Nanoparticles with Tunable Structure Using Plant Tannin as Reductant and Stabilizer

Xin Huang, Hao Wu, Shangzhi Pu, Wenhua Zhang, Xuepin Liao,* and Bi Shi*

Fig. S1. The particle size distribution of $BT_{0.4}$ -Au_{0.5}.

Fig. S2. The particle size distribution of $BT_{0.4}$ -Pd_{0.5}.

Fig. S3. TEM image of cubic $BT_{0.4}$ -Pd_{1.0}.

Fig. S4. STEM-EDS point analysis of a distinct $BT_{0.4}$ -Au_{0.5}@Pd_{0.01} NP, showing two spectra: one from the center of the particle (top), and another from the edge (bottom).

Fig. S5. TEM image (a) and the corresponding size distribution (b) of $BT_{0.4}$ -Au_{1.0}@Pd_{0.02}. HAADF-STEM image (c) and EDS mapping images (d, e, f) of $BT_{0.4}$ -Au_{1.0}@Pd_{0.02}. Cross-sectional compositional line spectra (g) of the $BT_{0.4}$ -Au_{1.0}@Pd_{0.02} in (c).

Fig. S6. TEM image (a), HAADF-STEM image (b), and cross-sectional compositional line spectra (c) of $BT_{0.4}$ -Au_{1.0}@Pd_{0.02} nanoparticle prepared by a step-wise reduction method.

Fig. S7. TEM image (a) of $BT_{0.4}$ -Au_{0.5}@Pd_{1.0}. The corresponding core (b) and shell size (c) distributions of cubic $BT_{0.4}$ -Au_{0.5}@Pd_{1.0}. High-magnification TEM images (d, e, f and g) of cubic $BT_{0.4}$ -Au_{0.5}@Pd_{1.0} marked in (a). HAADF-STEM (h) and EDS mapping images (i, j and k) of cubic $BT_{0.4}$ -Au_{0.5}@Pd_{1.0}.

Fig. S8. Wide-angle X-ray diffraction patterns of $BT_{0,4}$ -Pd_{1,0} (a), $BT_{0,4}$ -Au_{0.5} (b) and $BT_{0,4}$ -Au_{0.5}@Pd_{1,0}

Fig. S9. Insufficient growth of Pd shell over Au NPs in the sample of $BT_{0.1}$ -Au_{0.5}@Pd_{0.5}.

Fig. S10. TEM image (a) and the corresponding size distribution (b) of $BT_{0.8}$ -Au_{0.5}@Pd_{0.5}. HRTEM image (c) and EDS mapping images (d, e, f) of $BT_{0.8}$ -Au_{0.5}@Pd_{0.5}.

Fig. S11. The Au_{43} cluster with numbered Au atoms.

Numbered Au atom	Surface charge of	Surface charge of Surface charge of	
	Au ₄₃ cluster (e)	Pyrogallol ₁ -Au ₄₃ cluster	Pyrogallol ₂ -Au ₄₃ cluster
Au(1)	-0.026	-0.001	0.006
Au(2)	0.014	-0.003	0.01
Au(3)	0.018	-0.011	-0.004
Au(4)	0.028	-0.019	0.022
Au(5)	-0.02	0.019	-0.006
Au(6)	-0.019	0.017	-0.016
Au(7)	-0.012	0.013	-0.002
Au(8)	0.003	0	-0.011
Au(9)	-0.006	0.005	-0.011
Au(10)	0.001	-0.002	0.004
Au(11)	0.01	-0.029	0.012
Au(12)	-0.011	0.01	0.003
Au(13)	0	0.005	0.001
Au(14)	-0.001	0.008	-0.009
Au(15)	-0.017	-0.007	-0.016
Au(16)	0.019	-0.008	0.013
Au(17)	0.021	-0.02	0.015
Au(18)	0.014	-0.006	-0.005
Au(19)	0.023	-0.066	-0.048
Au(20)	0.005	0.004	0.006
Au(21)	0.02	-0.008	0.016

Fig. S12. The Surface charges of Au_{43} cluster and Pyrogallol-Au₄₃ cluster.

 Au(22)	-0.019	0.018	-0.015
Au(23)	-0.016	0.018	-0.029
Au(24)	-0.008	0.013	-0.022
Au(25)	-0.029	0.006	-0.038
Au(26)	0.001	0.006	-0.033
Au(27)	-0.004	0.007	-0.029
Au(28)	0.012	-0.009	-0.017
Au(29)	0.011	-0.041	-0.066
Au(30)	-0.035	0.007	-0.01
Au(31)	-0.011	0.011	0.006
Au(32)	-0.003	0.007	-0.009
Au(33)	0.005	0.001	0.008
Au(34)	0.004	-0.054	0.005
Au(35)	0.022	-0.028	0
Au(36)	0.004	0.007	0.014
Au(37)	-0.003	-0.007	0.013
Au(38)	0.019	-0.003	0.017
Au(39)	-0.011	0.016	-0.021
Au(40)	0.002	0.003	-0.024
Au(41)	-0.003	0.009	0.003
Au(42)	-0.015	0.003	-0.017
Au(43)	0.012	0.003	0.008
Sum	-0.001	-0.106	-0.276

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2011