Direct Nucleophilic Substitution Reaction of Alcohols Mediated by a Zinc-based Ionic Liquid

Anlian Zhu, Lingjun Li, Jianji Wang*, Kelei Zhuo

School of Chemical and Environmental Sciences, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China. E-mail: Jwang@henannu.edu.cn

Contents

1. Materials and General MethodsS2
2. Preparation procedure of the ZnCl ₂ -based ionic liquidsS2
3. Characterization of compounds 3a-kS3-S7
4. ReferencesS7
5. IR spectrums for the fresh and recovered ILs [CHCl][ZnCl ₂] ₂ S8
6. Copies of ¹ H NMR spectrum for compound 3eS9
7. Copies of ¹³ C NMR spectrum for compound 3eS10
8. Copies of ¹ H NMR spectrum for compound 3hS11
9. Copies of ¹³ C NMR spectrum for compound 3hS12
10. Copies of ¹ H NMR spectrum for compound 3iS13
11. Copies of ¹³ C NMR spectrum for compound 3iS14
12. Copies of ¹ H NMR spectrum for compound 3kS15
13. Copies of ¹³ C NMR spectrum for compound 3kS16

1. Materials and General Methods

2-Chloroethanlol and chlorobutane were purchased from alfa aesar and distilled before use. Zinc chloride, CH₂Cl₂, dioxane, 4-nitroaniline, benzoyl amide, 2,4-dinitrophenylhydrazine, tetrabutylammonium chloride, tetramethylammonium chloride were purchased from Beijing chemical Factory. 1-Methylimidazole, p-toluenesulfonamide, and alcohols were purchased from alfa aesar. The dicarbonate compounds were purchased from acrose organics. All of these reagents are AR grade and used without further purification. 1-Butyl-3-methylimidazolium chloride and 1-(2-hydroxy-ethyl)-3-methylimidazolium chloride were synthesized according to the procedures described in literatures.^[1,2]

¹H NMR data were recorded with Avance 400/DPX (Bruker) spectrometer from CDCl₃ solutions using the residual solvent signal as reference. Chemical shifts are reported in parts per million. All the values of chemical shift and coupling constants are quoted in ppm and Hz, respectively. Mass spectra were obtained on either VG-ZAB-HS or Bruker APEX. High-resolution MS were performed with Bruker BIFLEX III. Infrared spectra were recorded on a Bruker Vector 22 spectrometer in KBr with absorption in cm⁻¹. Elemental analyses were performed on Varian ELIII analyzer. The UV–vis spectroscopy was recorded using a TU-1021 UV–vis spectrometer (Beijing Instrument Company), and the wavelength accuracy is ± 1.0 nm.

2. Preparation procedure of the ZnCl₂-based ionic liquids

The ILs were prepared according to the procedures reported in literature.^[3] The quaternary ammonium salt was mixed with zinc chloride with a molar ratio of 1:2 and then heated to 150 °C in air with stirring until a clear homogeneous colorless liquid was obtained.

3. Characterization of compounds 3a-k

N-(4-nitrophenyl)-1,1'-diphenyl)-methyamine (3a). The physical data shown below were comparable to those reported in literature.^[4] Yellow solid, m.p. 194-195°C, reported m.p. 195°C; ¹H NMR (400 MHz, CDCl₃) δ: 8.07-8.03 (m, 2H), 7.40-7.31 (m, 10H), 6.54-6.51 (m, 2H), 5.66 (d, *J* = 4 Hz, 1H), 5.02 (br, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 152.7, 141.3, 139.1, 129.7, 128.5, 127.7, 127.0, 112.7, 63.1.

N-benzhydrylbenzamide (3b). The physical data shown below were comparable to those reported in literature. ^[5] White solid, m.p. 169-170 °C, reported m.p. 170°C; ¹H NMR (400 MHz, CDCl₃) δ : 7.85-7.44 (m, 5H), 7.39-7.29 (m, 10H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.48 (d, *J* = 7.6 Hz, 1H), ¹³C NMR (CDCl₃, 100 MHz) δ : 166.5, 140.7, 133.2, 130.8, 128.1, 127.9, 127.7, 127.0, 126.6, 56.4.

N-benzhydryl-*p*-toluenesulfonamide (3c). The physical data shown below were comparable to those reported in literature. ^[4] White solid, m.p. 157-158 °C, reported m.p.157°C; ¹H NMR (400 MHz, CDCl3) δ : 7.56 (d, *J* = 8.2 Hz, 2H), 7.21-7.07 (m, 12H), 5.61 (d, *J* = 7.2 Hz, 1H), 5.21 (d, *J* = 7.2 Hz, 1H), 2.5 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ : 143.2, 142.6, 140.3, 132.5, 131.2, 130.5, 130.3, 130.1, 60.2, 23.1.

N-Benzhydryl-N'-(2,4-dinitro-phenyl)-hydrazine (3d). The physical data shown below were comparable to those reported in literature. ^[4] White solid, m.p. 165-166 °C, reported m.p. 165°C; ¹H NMR (400 MHz, CDCl₃) δ : 9.28 (s, 1H), 9.04 (d, J = 2

Hz, 1H), 8.29 (dd, $J_1 = 9$ Hz, $J_2 = 1$ Hz), 7.95 (d, J = 9 Hz, 1H), 7.45-7.31 (m, 10 H), 5.22 (d, J = 5.2 Hz, 1H), 4.48 (d, J = 6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.1, 140.5, 138.9, 134.5, 132.1, 130.1, 129.3, 128.8, 126.7, 120.8, 65.9.

2-Benzhydryl-1-phenyl-butane-1,3-dione (3e).

White solid, m.p. 157-158 °C, ¹H NMR (400 MHz, CDCl₃) δ : 7.97 (d, J = 8 Hz, 2 H), 7.78-7.04 (m, 13 H), 5.63 (d, J = 12 Hz, 1H), 5.12 (d, J = 12 Hz, 1H), 2.06 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 202.1, 193.3, 140.8, 140.3, 136.0, 132.7, 128.0, 127.8, 127.7, 127.2, 126.8, 126.2, 125.8, 68.0, 50.5, 26.9. IR (KBr) v: 3436, 3060, 1715, 1675, 1589, 1442, 1266, 1242, 1201, 1144, 968, 772, 739, 690, 539. Element analysis (C₂₃H₂₀O₂): calculated C, 84.12; H, 6.14; Found C, 84.51; H, 6.17. HRMS (ESI): calculated 351.1361 for C₂₃H₂₀O₂Na⁺, found 351.1359 (M+Na⁺)

3-Benzhydryl-pentane-2,4-dione (3f). The physical data shown below were comparable to those reported in literature.^[6] White solid, m.p. 113-114 °C, reported m.p.112-114°C; ¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.06 (m, 10 H), 4.82 (d, J = 12 Hz, 1H), 7.74 (d, J = 12 Hz, 1H), 2.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ : 202.9, 141.2, 128.9, 127.7, 127.0, 74.5, 51.2, 29.7.

2-Benzhydryl-3-oxo-butyric acid ethyl ester (3g). The physical data shown below

were comparable to those reported in literature.^[7] White solid, m.p. 85-87°C, reported m.p. 84-86°C; ¹H NMR (400 MHz, CDCl₃) δ: 7.28-7.15 (m, 10 H), 4.77 (d, *J* = 12 Hz, 1 H), 4.55 (d, *J* = 12 Hz, 1 H), 3.99 (q, *J* = 7 Hz, 2 H), 2. 11 (s, 3 H), 1.01 (t, J = 7 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ: 201.7, 167.6, 141.5, 141.2, 128.8, 128.6, 127.8, 127.7, 126.9, 126.8, 65.2, 61.5, 50.9, 30.0, 13.7.

[Bis-(4-chloro-phenyl)-methyl]-(4-nitro-phenyl)-amine (3h).

Yellow solid, m.p. 193-195 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.06 (m, 2H), 7.73-7.24 (m, 8H), 6.51 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 150.6, 138.1, 133.2, 128.5, 127.8, 125.3, 111.4, 60.3. IR (KBr) v: 3399, 1712, 1601, 1515, 1470, 1307, 1185, 1111, 1086, 1009, 825, 792, 747, 698, 530. Element analysis (C₁₉H₁₄Cl₂N₂O₂): calculated C, 61.14; H, 3.78; N, 7.51; found C, 61.05; H, 3.72; N, 7.49. HRMS (ESI): calculated 395.0330 for C₁₉H₁₄Cl₂N₂O₂Na⁺, found 395.0318 (M+Na⁺).

2-[Bis-(4-chloro-phenyl)-methyl]-1-phenyl-butane-1,3-dione (3i).

White solid, m.p. 167-168 °C, ¹H NMR (400 MHz, CDCl₃) δ: 7.97 - 7.13 (m, 13 H),

5.53 (d, J = 12 Hz, 1H), 5.09 (d, J = 12 Hz, 1H), 2.06 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 201.2, 192.7, 138.9, 138.3, 135.6, 133.1, 132.3, 131.8, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 67.7, 49.1, 27.0. IR (KBr) v: 3432, 3060, 3023, 1716, 1670, 1593, 1495, 1446, 1352, 1262, 1246, 1205, 1148, 972, 768, 747, 702, 694, 547. Element analysis (C₂₃H₁₈Cl₂O₂): calculated C, 69.53; H, 4.57; found C, 69.42; H, 4.53. HRMS (ESI): calculated 419.0582 for C₂₃H₁₈Cl₂O₂ Na⁺, found 419.0596 (M+Na⁺).

1-Phenyl-2-(1-phenyl-ethyl)-butane-1,3-dione (3j). The physical data shown below were comparable to those reported in literature. ^[7] Oil, ¹H NMR (400 MHz, CDCl₃) δ : 8.11-7.06 (m, 10 H), 4.92 (d, J = 11 Hz, 1H), 4.32 (d, J = 11 Hz, 1H), 3.91-3.83 (m, 2 H), 2.25 (s, 3 H), 1.92 (s, 3 H), 1.32 (d, J = 7 Hz, 3 H), 1.22 (d, J = 7 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 203.7, 203.2, 195.2, 143.4, 143.1, 137.2, 137.0, 133.8, 133.4, 128.9, 128.8, 128.6, 128.4, 127.5, 127.3, 127.0, 126.6, 71.5, 70.8, 40.9, 40.3, 27.9, 27.5, 21.6, 20.3. ESI-MS (m/z): 267.1 (M+H)⁺.

N-(1,3-Diphenyl-allyl)-4-methyl-benzenesulfonamide (3k).

White solid, m.p. 136-137 °C, ¹H NMR (400 MHz, CDCl₃) δ : 7.70-7.68 (m, 2 H), 7.31-7.09 (m, 16 H (including the H of chloroform)), 6.41-6.37 (d, J = 16 Hz), 6.14-6.08 (dd, $J_1 = 16$ Hz, $J_2 = 6.8$ Hz), 5.16-5.13 (m, 1 H), 4.84-4.82 (d, J = 7.2 Hz), 2.37 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ : 137.6, 134.0, 132.0, 130.4, 126.5, 123.8, 123.1, 122.8, 122.5, 122.2, 122.2, 121.7, 121.4, 120.9, 54.1, 15.8. IR (KBr) v: 3293, 3023, 1716, 1597, 1491, 1446, 1323, 1160, 1148, 1091, 1017, 968, 919, 817, 690, 666, 568, 543. Element analysis ($C_{22}H_{21}NO_2S$): calculated C, 72.70; H, 5.82; N, 3.85; found C, 72.58; H, 5.81; N, 3.79. HRMS (ESI): calculated 386.1191 for $C_{22}H_{21}NO_2S$ Na⁺, found 386.1186 (M+Na⁺)

References

- [1] A. Noda, M. Watanabe, Electrochim. Acta, 2000, 45, 1265.
- [2] J. F. Dubreuil, M. H. Famelart and J. P. Bazureau, Org. Proc. Res. Dev., 2002, 6, 374.
- [3] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, V. Tambyrajah, *Chem. Commun.*, 2001, 2010.
- [4] V. Terrasson, S. Marque, M. Georgy, J. M. Campagne, D. Prim, Adv. Synth. Catal., 2006, 348, 2063.
- [5] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett., 2006, 8, 1431.
- [6] K. Motokura, N. Nakagiri, T. Mizugaki, K. Ebitani and K. Kaneda, J. Org. Chem., 2007, 72, 6006.
- [7] R. Sanz, D. Miguel, A. Martı'nez, J. M. Álvarez-Gutiérrez, F. Rodríguez. Org. Lett., 2007, 9, 2027.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Fig. IR spectrum for the fresh and recovered ILs: bule, the fresh $[CHC1][ZnCl_2]_2$; red, the fifth recovered $[CHC1][ZnCl_2]_2$.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

