Supplementary information

Adapting a Wacker-Type Catalyst System to the Palladium-Catalyzed Oxidative Carbonylation of Aliphatic Polyols

Franco Doro^a, Patrick Winnertz^a, Walter Leitner^{b,c}, Angelina Prokofieva^a,

Thomas E. Müller*,^a

- ^a CAT Catalytic Center, ITMC, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany.
- ^b Institut f
 ür Technische und Makromolekulare Chemie, Technische Chemie und
 Petrolchemie, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany.
- ^c Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

Corresponding Author:

Dr. Thomas Ernst Müller. Tel.: + 49. 241. 80 - 28 594; Fax: +49. 241. 80 22 593; E-mail: <u>Thomas.Mueller@CatalyticCenter.RWTH-Aachen.de</u>

Experimental

Materials and instrumentation: All reagents and solvents were purchased from

commercial suppliers (Table 1) and used as received.

Table 1. Source and	purity of reagents	obtained from	commercial suppliers
---------------------	--------------------	---------------	----------------------

Chemical	Supplier	Purity ^a / %
Dimethyl ethylene glycol (DME)	Sigma Aldrich	99.9
Ethylene glycol (EG)	Sigma Aldrich	99.8
Propylene glycol (PG)	Sigma Aldrich	99.5
Phenylethylene glycol (PEG)	Sigma Aldrich	97
Ethylene carbonate (EC)	Sigma Aldrich	>99.0
Propylene carbonate (PC)	Fluka	99.7
Palladium(II)acetate	Sigma Aldrich	>99.9
Palladium(II)bromide	Sigma Aldrich	99
Palladium(II)chloride	Alfa Aesar	99.9
Copper(II)chloride	Sigma Aldrich	>99.9
Sodium acetate	Sigma Aldrich	>99.0
Potassium bromide	ABCR	>99.9
Manganese(III)acetylacetonate	Sigma Aldrich	tech.
Potassium chloride	Fisher Scientific	>99
Lithium chloride	Sigma Aldrich	>99.0
Triethylamine	Fluka	>99.5
Gas mixture $CO/O_2/N_2$	Air Products	5.99:2.99:91.02
Tetrabutylammonium bromide (TBAB)	Fluka	>99.0
Diethylene glycol dimethyl ether	Sigma Aldrich	99.5

^a minimum purity as stated by the manufacturer

Gas chromatographic analyses were performed on a Focus GC-Thermo Scientific or Siemens SiChromat 1-4 gas chromatograph. For HPLC analysis, a Jasco instrument was used (pump = PU-2080*Plus;* degaser = DG-2080-54; gradient = LG-2080-04S; autosampler = AS-2055*Plus;* Diode-Array-Detector = MD-2010*Plus;* RI-Detector = RI-2031*Plus*) **Oxidative carbonylation of diols:** The experiments were performed in 20 mL stainless steel autoclaves equipped with thermocouple, glass liner and magnetic stirring bar. In a typical experiment, the glass liner was charged with ethylene glycol (56 mg, 0.9 mmol), KBr (10.7 mg, 0.09 mmol), Pd(OAc)₂ (0.71 μ mol, 200 μ L, 3.56 mM in DME), Mn(acac)₃ (5.0 mg, 14.3 μ mol) and DME (2 mL). The autoclave was purged three times with argon (4 bar) and subsequently pressurized with 20 bar of a gas mixture CO:O₂:N₂ (6:3:91). The reaction mixture was stirred with 300 rpm at 60 °C. After 20 h, the autoclave was cooled down and the pressure released. Diethylene glycol dimethyl ether (DiglyMe) (0.70 mmol, 100 μ L) was added as internal standard for gas chromatography and the solution filtered through a polyamide filter with a pore size of 0.20 μ m.

The conditions for gas chromatographic analysis of ethylene glycol (EG), propylene glycol (PG), 3-methoxypropane-1,2-diol (MG) were as follows: CP-Wax-58-CB column, inlet temperature = 250 °C, initial temperature = 50 °C (5 min), 50-180 °C with a Δ T (10 °C/min) and 180 °C (27 min), FID temperature = 250 °C; t_{EG} = 14.97 min, t_{PG} = 14.42 min, t_{MG} = 16.91 min, t_{EG-carbonate} = 18.82 min, t_{PG-carbonate} = 17.69 min, t_{MG-carbonate} = 21.39 min, t_{DiglyMe} = 10.58 min.

Phenyl ethylene glycol (PEG) was analysed at the following conditions: Rtx-5-Sil-MS column, inlet temperature = 250 °C, initial temperature = 80 °C (5 min), 80-300 °C with a ΔT (12 °C/min) and 180 °C (27 min), FID temperature = 300 °C; t_{PEG} = 10.74 min, t_{PEG-carbonate} = 13.10 min, t_{DiglyMe} = 3.76 min.

Oxidative carbonylation of glycerol: The experiments were performed in 200 mL stainless steel autoclaves equipped with thermocouple and magnetic stirring bar. In a

typical experiment, the autoclave was charged with glycerol (492 mg, 5.34 mmol), KBr (212 mg, 1.78 mmol), Pd(OAc)₂ (4.0 mg, 17.8 μ mol), Mn(acac)₃ (126 mg, 360 μ mol), and ethyl acetate (100 mL). The autoclave was purged three times with argon (4 bar) and subsequently pressurized with 20 bar of a gas mixture CO:O₂:N₂ (6.3:91). The reaction mixture was stirred with 300 rpm at 60 °C. After 20 h, the autoclave was cooled down and the pressure released. The solution was filtered trough a polyamide filter with a pore size of 0.20 μ m.

Selectivity and conversion were determined by HPLC (Showa Denko - Sugar SH1011 column, oven temperature = 20 °C, flow = 1.0 mL/min, eluent: 0.01% acetic acid in water, $t_{glycerol} = 9.91$ min, $t_{glycerol-carbonate} = 14.39$ min).

Results and additional data

In order to assess the role of KBr, a series of tests at different Pd:KBr ratios was carried out. The catalyst productivity significantly increased, when KBr was used as additive in a Pd:KBr ratio of 1:5. Surprisingly, further increase in the KBr concentration hardly affected the catalyst productivity in the Pd:KBr range of 1:5 to 1:500 (Table 2).

Table 2. Effect of the Pd/KBr ratio on the oxidative carbonylation of $1a^{a}$

Entry	Pd/KBr	TON
1	1/0	13.6
2	1/5	117
3	1/10	109
4	1/50	105
5	1/100	123
6	1/500	113

^[a] *Reaction conditions*: $[1a]^0 = 0.45 \text{ mM}$, $1a:Pd(OAc)_2:Mn(acac)_3 = 1250:1:20$, solvent = DME (2 mL), T = 60 °C, 20 bar CO:O₂: N₂ (6:3:91), reaction time = 2 h.

The effect of various additives such as KCl, LiCl and tetrabutylammonium bromide (TBAB) on the performance of the catalyst in the oxidative carbonylation of **1a** was also explored (Table 3). Potassium bromide provided the highest turnover numbers.

Table 3. Effect of different additives on the oxidative carbonylation of $1a^a$

Entry	Additive	TON
1	-	17
2	NaOAc ^b	17.4
3	TBAB	23
4	KBr	123
5	KCl	32
6	LiCl	45

^[a] *Reaction conditions*: $[1a]_0 = 0.45$ mM; $1a:Pd(OAc)_2:Mn(acac)_3:additive = 1250:1:20:100$; solvent = DME (2 mL); T = 60 °C, 20 bar CO:O₂:N₂ (6:3:91); time = 2 h. ^[b] Pd(OAc)₂:additive = 1/1000, reaction time = 20 h