Supporting Information

(Part I: Experimental procedures, Analytical data)

Cu₂O acting as a robust catalyst in CuAAC reactions: Water is the required medium

Kai Wang, Xihe Bi,^{*} Shuangxi Xing, Peiqiu Liao, Zhongxue Fang, Xianyu Meng, Qian Zhang,^{*}

Qun Liu, Yu Ji

Department of Chemistry, Northeast Normal University, Changchun 130024, China

E-mail: <u>bixh507@nenu.edu.cn</u>; <u>zhangq651@nenu.edu.cn</u>

Contents

Table of contents	S1
I. General information	S2
II. Procedure for the reactions 'in water'	S2
III. Procedure for the reactions under neat conditions	S2
IV. Analytical data of compounds	- S11

I. General information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H-NMR and ¹³C-NMR spectra were recorded at 25°C on a Varian 500 MHz and 125 MHz, respectively, and TMS was used as internal standard. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. Procedure for the reactions 'in water'

Sulfonyl azide (1.0 mmol), alkyne (1.2 mmol),¹ Cu₂O (0.1 mmol), water (1.0 mL) were added to a flask with a stir bar, and the mixture was stirred at room temperature (25°C) without exclusion of air. After the reaction was completed, monitored by TLC, the reaction mixture was diluted by adding CH₂Cl₂ (2 mL) and aqueous NH₄Cl solution (3 mL). The mixture was stirred for an additional 30 minutes and two layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 mL × 3). The combined organic layers were dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The crude product was purified on a short silica gel column with an appropriate eluting solvent (using EtOAc/ petroleum ether) to get a pure *N*-sulfonyl-1,2,3-triazoles.

III. Procedure for the reactions under neat conditions

Sufonyl azide (0.5 mmol), alkyne (0.6 mmol), Cu_2O (1 *ul*, 0.05 M in THF) were added into a flask with a stir bar and 100 *ul* H₂O as the additive.² The mixture was stirred at 50°C without exclusion of air. After most of the starting azide was consumed, monitorde by TLC, the reaction mixture was washed by small amount of ether, then collected *N*-sulfonyl-1,2,3-triazoles by the filtration.

¹ Solid alkynes **1f**, **1g** or solid azides **2o**, **2p** was pre-dissolved in 0.2 mL ethyl acetate.

² Using the Dragon[®] MicroPette to transfer the micro amount of reagents.

IV. Analytical data of compounds³

3a (1-(4-Methylbenzenesulfonyl)-4-phenyl-1,2,3-triazole)

White solid, m.p. 108-109 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.44-7.35 (m, 5H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.32, 147.31, 133.08, 130.43, 129.05, 128.95, 128.84, 128.66, 126.04, 118.90, 21.78; **MALDI-TOF/TOF-MS**: (m/z): 300.1 [M + 1]⁺.

3b (1-(4-Methylbenzenesulfonyl)-4-(4-methylphenyl)-1,2,3-triazole)

White solid, m.p. 158-159 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (s, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 147.43, 147.23, 139.06, 133.13, 130.39, 129.62, 128.63, 125.93, 118.47, 21.78, 21.28; **MALDI-TOF/TOF-MS**: (m/z): 314.1 [M + 1]⁺.

3c (1-(4-Methylbenzenesulfonyl)-4-(4-tert-butylphenyl)-1,2,3-triazole)

White solid, m.p. 171-172 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), 1.33 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 152.27, 147.34, 147.24, 133.04, 130.39, 128.58, 125.92, 125.86, 125.75, 118.57, 34.69, 31.16, 21.78; MALDI-TOF/TOF-MS: (m/z): 356.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₉H₂₂N₃O₂S [M+1]⁺: 356.1427, found: 356.1426.

³ Compounds **3a**, **3b**, **3h**, **3j**, **3m**, **3q**, **3r** have been previously reported in the reference of E. J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B. Sharpless, S. Chang, *Angew. Chem. Int. Ed.*, 2007, **46**, 1730.

3d (1-(4-Methylbenzenesulfonyl)-4-(2-trifluoromethylphenyl)-1,2,3-triazole)

White solid, m.p. 108-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H), 7.76 (d, J = 8.0 Hz), 7.64-7.61 (m, 1H), 7.54-7.51 (m, 1H), 7.41 (d, J = 7.5 Hz), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.51, 143.77, 132.81, 132.08, 131.76, 130.50, 129.07, 128.63, 127.58, 127.47, 126.28, 126.23, 124.88, 122.71, 122.36, 122.31, 21.80; **MALDI-TOF/TOF-MS**: (m/z): 368.1 [M + 1]⁺. **HRMS** (ESI) m/z calculated for C₁₆H₁₃F₃N₃O₂S [M+1]⁺ :368.0675, found: 368.0674.

3e (1-(4-Methylbenzenesulfonyl)-4-(3-fluorophenyl)-1,2,3-triazole)

White solid, m.p. 140-141 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.59-7.54 (m, 2H), 7.42-7.39 (m, 3H), 7.07-7.05 (m, 1H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.32, 161.86, 147.50, 146.21, 132.91, 131.03, 130.6,7 130.59, 130.49, 128.74, 121.68, 119.35, 116.05, 115.84, 113.18, 112.95, 25.80, 21.82; MALDI-TOF/TOF-MS: (m/z): 318.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₅H₁₃FN₃O₂S [M+1]⁺ :318.0707, found: 318.0704.

3f (1-(4-Methylbenzenesulfonyl)-4-(2-aldehydephenyl)-1,2,3-triazole)

White solid, m.p. 107-108 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.28 (s, 1H), 8.45 (s, 1H), 8.07 (d, *J* = 8.5 Hz, 2H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.68-7.65 (m, 1H), 7.58-7.55 (m, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 191.67, 147.69, 144.32, 133.96, 133.83, 132.77, 130.95, 130.59, 130.31, 129.69, 129.45, 128.86, 122.65, 21.87; **MALDI-TOF/TOF-MS**: (m/z): 328.1 $[M + 1]^+$. **HRMS** (ESI) m/z calculated for $C_{16}H_{14}N_3O_3S$ $[M+1]^+$:328.0751, found: 328.0751.

3g (1-(4-Methylbenzenesulfonyl)-4-(6-methoxynaphthalen)-1,2,3-triazole)

White solid, m.p. 166-167 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 8.27 (s, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.84-7.82 (m, 1H), 7.78-7.75 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.17 (dd, J = 2.0, 8.5 Hz, 1H), 7.13 (d, J = 2.0 Hz, 1H), 3.92 (s, 3H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 158.27, 147.59, 147.28, 134.75, 133.09, 130.43, 129.77, 128.74, 128.64, 127.54, 125.10, 124.13, 123.94, 119.54, 118.68, 105.74, 55.32, 21.80; MALDI-TOF/TOF-MS: (m/z): 380.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₂₀H₁₈N₃O₃S [M+1]⁺ : 380.1063, found: 380.1052.

3h (4-(Cyclohex-1-enyl)- 1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

White solid, m.p. 102-103 °C. ¹**H** NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.89 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.65 (t, *J* = 3.5 Hz, 1H), 2.43 (s, 3H), 2.31-2.29 (m, 2H), 2.20-2.18 (m, 2H), 1.76-1.72 (m, 2H), 1.67-1.62 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 148.92, 147.01, 133.33, 130.31, 128.50, 127.64, 125.77, 117.34, 26.14, 25.24, 22.21, 21.94, 21.76; MALDI-TOF/TOF-MS: (m/z): 304.1 [M + 1]⁺.

3i (4-Propyl-1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.5 Hz), 7.84 (s, 1H), 7.37 (d, J = 8.0 Hz), 2.70-2.66 (m, 2H), 2.44 (s, 3H), 1.69-1.66 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 147.04, 147.01, 133.29, 130.31, 128.48, 120.27, 27.29, 22.13, 21.73, 13.57; MALDI-TOF/TOF -MS: (m/z): 266.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₂H₁₆N₃O₃S

[M+1]⁺: 266.0958, found: 266.0961.

3j (4-Cyclopropyl-1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

White solid, m.p. 105-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz), 7.80 (s, 1H), 7.36 (d, J = 8.5 Hz, 2H), 2.43 (s, 3H), 1.94-1.91 (m, 1H), 0.99-0.95 (m, 2H), 0.88-0.84 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 150.06, 147.01, 133.25, 130.30, 128.48, 119.19, 21.72, 7.90, 6.39; MALDI-TOF/TOF-MS: (m/z): 264.1 [M + 1]⁺.

3k (4-(Bromomethyl)- 1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

White solid, m.p. 104-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.99 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 3.62 (t, *J* = 7.0 Hz, 2H), 3.30 (t, *J* = 7.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.33, 144.57, 132.94, 130.44, 128.64, 121.50, 30.49, 29.02, 21.85; MALDI-TOF/TOF-MS: (m/z): 330.0[M + 1]⁺.

31 (4-Ethyloxy-1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

White solid, m.p. 88-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.52 (s, 1H), 7.38 (d, J = 8.0 Hz, 2H), 4.25 (q, J = 7.0 Hz, 2H), 2.45 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.07, 147.16, 132.87, 130.32, 128.48, 104.75, 66.98, 21.73, 14.55; MALDI-TOF/TOF-MS: (m/z): 268.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₁H₁₄N₃O₃S [M+1]⁺ :268.0751, found: 268.0750.

3m (4-(Tert-Butyloxycarbamidomethyl)-1-(4-methylbenzenesulfonyl)-1,2,3-triazol)

White solid, m.p. 118-119 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 5.17 (br, 1H), 4.39 (d, *J* = 4.5 Hz, 2H), 2.45 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.71, 147.31, 145.38, 132.95, 130.40, 128.64, 121.75, 35.76, 28.26, 21.77; MALDI-TOF/TOF-MS: (m/z): 353.1 [M + 1]⁺.

3n (4-(p-Tolyloxymethyl)- 1-(4-Methylbenzenesulfonyl)- 1,2,3-triazole)

White solid, m.p. 135-136 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 7.99 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 5.16 (s, 2H), 2.45 (s, 3H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.79, 147.40, 144.34, 132.94, 130.93, 130.44, 130.04, 128.77, 122.39, 114.57, 61.76, 21.82, 20.45; MALDI-TOF/TOF-MS: (m/z): 344.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₇H₁₈N₃O₃S [M+1]⁺: 344.1064, found: 344.1067.

30 (1-(4-Chlorobenzenesulfonyl)-4-phenyl-1,2,3-triazole)

White solid, m.p. 133-134 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.09 (d, J = 9.0 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.45-7.38 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.54, 142.81, 134.42, 130.23, 130.03, 129.24, 129.01, 128.56, 126.08, 118.90; MALDI-TOF/TOF-MS: (m/z): 320.0 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₄H₁₁ClN₃O₂S [M+1]⁺ : 320.0255, found: 320.0263.

3p (1-(Naphthalenyl-2-sulfonyl)- 4-phenyl-1,2,3-triazole)

White solid, m.p. 143-144 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.38 (s, 1H), 8.05-8.00 (m, 3H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.83-7.81 (m, 2H), 7.74-7.71 (m, 1H), 7.74-7.71 (m, 1H),

7.71-7.65 (m, 1H), 7.43-7.40 (m, 2H), 7.36 (d, J = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.40, 135.98, 132.68, 131.84, 131.23, 130.50, 130.31, 129.77, 129.10, 128.96, 128.71, 128.29, 128.08, 126.04, 122.15, 119.01; MALDI-TOF/TOF-MS: (m/z): 336.1 [M + 1]⁺. HRMS (ESI) m/z calculated for C₁₈H₁₄N₃O₂S [M+1]⁺: 336.0801, found: 336.0809.

3q (1-(Methylsulfonyl)-4-phenyl-1,2,3-triazole)

White solid, m.p. 89-90 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 7.86 (d, *J* = 7.0 Hz, 2H), 7.48-7.40 (m, 3H), 3.57 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 147.41, 129.24, 129.03, 128.56, 126.10, 118.91, 42.63; MALDI-TOF/TOF-MS: (m/z): 224.0 [M + 1]⁺.

3r (1-[(7,7-Dimethylbicyclo[2.2.1]heptan-1-yl)methanesulfonyl]-4-phenyl-1,2,3-triazole)

Yellow solid, m.p. 101-102 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.47-7.44 (m, 2H), 7.39-7.37 (m, 1H), 3.99 (d, *J* = 15.0 Hz, 1H), 3.64 (d, *J* = 15.0 Hz, 1H), 2.41-2.31 (m, 2H), 2.17-2.15 (m, 1H), 2.11-2.05 (m, 1H), 1.90-1.85 (m, 1H), 1.51-1.46 (m, 1H), 1.12 (s, 3H), 0.89 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 212.99, 147.13, 129.02, 128.90, 128.64, 126.00, 119.39, 58.69, 53.54, 48.36, 42.58, 42.18, 26.81, 25.05, 19.48; MALDI-TOF/TOF-MS: (m/z): 360.1 [M + 1]⁺.

4a (1-[Ethanesulfonyl azide]-4-phenyl-1,2,3-triazole)

Yellow solid, m.p. 173-174 °C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.83 (d, *J* = 6.0 Hz, 2H), 7.44-7.37 (m, 3H), 4.93 (t, *J* = 7.5 Hz, 2H), 4.04 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO) δ 147.09, 131.07, 129.57, 128.60, 125.70, 122.45, 54.55, 44.57; MALDI-TOF/TOF-MS:

(m/z): 279.1 $[M + 1]^+$. **HRMS** (ESI) m/z calculated for $C_{10}H_{10}N_6O_2S [M+1]^+$: 279.0659, found: 279.0658.

4b (1-Benzyl-4-*p*-tolyl-1,2,3-triazole)

White solid, m.p. 179-180 °C. ¹**H** NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.62 (s, 1H), 7.39-7.36 (m, 3H), 7.31 (d, J = 6.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.56 (s, 2H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 148.27, 137.97, 134.69, 129.44, 129.11, 128.72, 128.03, 127.66, 125.55, 119.09, 54.16, 21.25. **HRMS** (ESI) m/z calculated for C₁₆H₁₆N₃ [M+1]⁺ : 250.1339, found: 250.1336.

4c (1-Phenyl-4-*p*-tolyl-1,2,3-triazole)

White solid, m.p. 173-174 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.81-7.78 (m, 4H), 7.56-7.53 (m, 2H), 7.46-7.44 (m, 1H), 7.27 (d, J = 6.5 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 148.47, 138.31, 137.09, 129.75, 129.59, 128.69, 127.38, 125.73, 120.49, 117.21, 21.32. HRMS (ESI) m/z calculated for C₁₅H₁₃N₃ [*M*+1]⁺ : 236.1182, found: 236.1192.

4d (1-Phenylethaneone-4-*p*-tolyl-1,2,3-triazole)

White solid, m.p. 182-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.5 Hz, 2H), 7.89 (s, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.68-7.66 (m, 1H), 7.24 (d, J = 7.5 Hz, 2H), 5.86 (s, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 190.31, 148.20, 137.99, 134.56, 133.86, 129.46, 129.12, 128.12, 127.62, 125.65, 121.14, 55.42, 21.27. HRMS (ESI) m/z calculated for C₁₇H₁₆N₃O [M+1]⁺ : 236.1288, found: 236.1290.

4e (1-Hexyl-4-*p*-tolyl-1,2,3-triazole)

White solid, m.p. 76-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.31 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H), 1.89-1.86 (m, 2H), 1.26-1.29 (m, 6H), 0.86 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.40, 137.53, 129.23, 127.72, 125.28, 119.03, 50.08, 30.92, 30.06, 25.90, 22.18, 21.02, 13.72. HRMS (ESI) m/z calculated for C₁₅H₂₂N₃ [M+1]⁺ : 244.1808, found: 244.1810.

4f (1-Phenyl-4-(tert-Butyloxycarbamidomethyl)- 1,2,3-triazole)

White solid, m.p. 131-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.72 (d, J = 7.5 Hz, 2H), 7.53-7.49 (m, 2H), 7.45-7.41 (m, 1H), 5.37 (br, 1H), 4.49 (d, J = 6.0 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.85, 146.14, 136.90, 129.64, 128.65, 120.40, 120.17, 79.66, 35.97, 28.29. HRMS (ESI) m/z calculated for C₁₄H₁₉N₄O₂ [M+1]⁺ : 275.1503, found: 275.1501.

4g (1-Phenyl-4-(Bromomethyl)- 1,2,3-triazole)

White solid, m.p. 106-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.52-7.49 (m, 2H), 7.45-7.43 (m, 1H), 3.72 (t, J = 6.0 Hz, 2H), 3.38 (t, J = 6.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 145.43, 136.93, 129.65, 128.61, 120.38, 119.88, 31.36, 29.33. HRMS (ESI) m/z calculated for C₁₀H₁₁BrN₃ [M+1]⁺ : 252.0131, found: 252.0130.

4h (1-Phenyl-4-[4-hydroxymethyl]- 1,2,3-triazole)

White solid, m.p. 122-123 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.69 (d, J = 8.0 Hz,

2H), 7.50-7.47 (m, 2H), 7.43-7.40 (m, 1H), 4.89 (s, 2H), 4.27 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 148.32, 136.83, 129.66, 128.73, 120.44, 120.23, 56.06. HRMS (ESI) m/z calculated for C₉H₁₀N₃O [M+1]⁺ : 176.0819, found: 176.0818.

4i (Ethyl 1-phenyl-1,2,3-triazole-4-caboxylate)

White solid, m.p. 107-108 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.57-7.54 (m, 2H), 7.51-7.48 (m, 1H), 4.46 (dd, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.47, 140.64, 136.17, 129.78, 129.36, 125.44, 120.62, 61.32, 14.18. HRMS (ESI) m/z calculated for C₁₁H₁₁N₃O₂Na [M+Na]⁺ : 240.0743, found: 240.0736.

4j (1-Phenyl-4-triethylsilyl-1,2,3-triazole)

Colorless liquid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.50-7.47 (m, 2H), 7.40-7.37 (m, 1H), 1.03 (t, J = 8.0 Hz, 9H), 0.88 (t, J = 8.0 Hz, 6H); ¹³**C NMR** (CDCl₃, 125 MHz) δ 144.35, 136.88, 129.47, 128.22, 127.51, 120.46, 7.19, 3.30. **HRMS** (ESI) m/z calculated for C₁₄H₂₂N₃Si [M+1]⁺: 260.1578, found: 260.1581.

Supporting Information

(Part II: Spectra Copies)

Cu₂O acting as a robust catalyst in CuAAC reactions: Water is

the required medium

Kai Wang, Xihe Bi,^{*} Shuangxi Xing, Peiqiu Liao, Zhongxue Fang, Xianyu Meng, Qian Zhang,^{*} Qun Liu, Yu Ji

Department of Chemistry, Northeast Normal University, Changchun 130024, China E-mail: <u>bixh507@nenu.edu.cn</u>; <u>zhangq651@nenu.edu.cn</u>

Contents

Table of Contents	S1
1 H/ 13 C NMR spectra copies of compounds 3a-3r and 4a-4j	S2 - S29
¹ H NMR spectrum of 3a-D	S30
NOE spectrum of 4b	

S21

S23

¹H NMR spectrum of **3a-D**

NOE spectrum of **4b**

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011