Supplementary Information

Synthesis of Pd Nanocrystals in Phosphonium Ionic Liquids Without External Reducing Agents

Hassan A. Kalviri and Francesca M. Kerton*

Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada Corresponding author. E-mail: fkerton@mun.ca

Figure S1. UV-vis spectrum of Pd nanocrystals prepared from reduction of $Pd(CH_3CN)_2Cl_2$ in [P₆₆₆₁₄]DBS. 60 mg of the reaction mixture was diluted in 5 mL of dichloromethane.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

20 nm

Figure S2. TEM image of the Pd nanocrystals (and the corresponding selected area electron diffraction patterns) synthesized from dissolved $Pd(CH_3CN)_2Cl_2$ (top) and $Pd(OAc)_2$ (bottom) in [P₆₆₆₁₄]DBS.

(111) (200) (311)

Figure S3. Thermogram of Pd nanocrystals. Sample was heated with a ramp of 20 °C/min under nitrogen flow. Approximately 10 wt% loss is seen between 30 °C and 350 °C.

Figure S4. ESI-MS spectrum (negative scan) of $[P_{66614}]DBS$ before (top) and after (bottom) the synthesis of Pd nanocrystals.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S5. ESI-MS spectrum (positive scan) of $[P_{66614}]$ DBS before (top) and after (bottom) the synthesis of Pd nanocrystals.

Figure S6. ³¹P-NMR of neat [P₆₆₆₁₄]Cl (spectrum 1, $\omega_{1/2} = 60$ Hz), neat [P₆₆₆₁₄]DBS (spectrum 2, $\omega_{1/2} = 48$ Hz) and [P₆₆₆₁₄]DBS after the formation of Pd nanocrystals (spectrum 3, $\omega_{1/2} = 74$ Hz).

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S7. Size distribution histograms of Pd nanocrystals synthesized from the reaction of $Pd(CH_3CN)_2Cl_2$ in $[P_{66614}]DBS$ (A) and $Pd(CH_3CN)_2Cl_2$ in $[P_{66614}]bis(trifluoromethylsulfonyl)amide$ (B).

Figure S8. Cyclic voltammagrams in CH₃CN for **1** (4.0 mmol L⁻¹) in blue, and **1** (4.0 mmol L⁻¹) with Pd(CH₃CN)₂Cl₂ (1.3 mmol L⁻¹) in red. Working electrode = Pt disk (0.0045 cm²), counter electrode = high surface area Pt wire and reference electrode = saturated calomel electrode (SCE). Scan rate, in both experiments, was 200 mV s⁻¹. The value vs. Fc/Fc⁺ in CH₃CN can be calculated from the values vs. SCE by subtracting 0.47 V.

Note: Viscosity is an important factor in electrochemistry due to the necessary migration of species in solution. Phosphonium ILs with long alkyl chains (such as 1) are not recommended for electrochemical purposes without a co-solvent as they are more viscous than their short-chain counterparts.

Figure S9. TEM image of the Pd nanocrystals (and the corresponding selected area electron diffraction pattern) synthesized from dissolved $PdCl_2$ in $[P_{66614}]DBS$

Figure S10. TEM image of the Pd nanocrystals (and the corresponding selected area electron diffraction patterns) synthesized from dissolved $Pd(CH_3CN)_2Cl_2$ in $[P_{66614}]$ bis(trifluoromethylsulfonyl)amide.

Figure S11. TEM image of the Pd nanocrystals (and the corresponding selected area electron diffraction patterns) synthesized from dissolved $Pd(CH_3CN)_2Cl_2$ in [P₆₆₆₁₄]hexafluorophosphate.

Figure S12. Oxidative etching effect on the reaction. In this study, the same amount of $Pd(CH_3CN)_2Cl_2$ was dissolved in dried and degassed [P₆₆₆₁₄]DBS. The solutions were stirred with the same speed on the benchtop (A) and in glove box (B) for 18 h.

Figure S13. HRTEM images of the Pd nanocrystals prepared from $Pd(CH_3CN)_2Cl_2$ in a 1:1 mole ratio mixture of [P₆₆₆₁₄]DBS and THF at room temperature. Stacking defects are observable in the images.