Supporting Information File

Single Bilayered Organic Nanotubes: Anchors for Production of a Reusable Catalyst with Nickel Ions

Tanmay Chattopadhyay^{a b}, Masaki Kogiso^b, Masaru Aoyagi^{b*}, Hiroharu Yui^c, Masumi Asakawa^b, Toshimi Shimizu^b

^a Department of Chemistry, Panchakot Mahavidyalya, Sarbari, Neturia, Purulia, 723 121, India

^b Nanotube Research Centre (NTRC), National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan. Email address: masaru-aoyagi@aist.go.jp; Fax: +81-29-861-4676; Tel: +81-29-861-4676. ^cDepartment of Chemistry, Faculty of Science, Tokyo University of Science (TUS), Funagawara-machi 12, Ichigaya, Shinjuku-ku, Tokyo 162-0826, Japan.

Contents:

- **1.** XRPD spectrum of Ni-ONT, before (Figure S1) and after (Figure S2) oxidation reactions.
- 2. UV-Vis spectrum of filtrate, after 5 h stirring of Ni-ONT with 30% H₂O₂.
- 3. FTIR spectrum of Ni-ONT, before (Figure S4) and after (Figure S5) oxidation reactions.
- 4. Turn Over Frequency of Cu-ONT.
- 5. Reuse of Ni-ONT with H₂O₂ for oxidation reactions.

1. XRPD spectrum of Ni-ONT, before and after oxidation reactions.

X-ray powder diffraction (XRPD) was performed on a Rigaku R-AXIS IV X-ray diffractometer monochromated Cu-K α radiation (40.0 kV, 30.0 mA) at room temperature.

Fig. S1. XRPD spectrum of Ni-ONT, before oxidation reactions.

Fig. S2. XRPD spectrum of Ni-ONT, after oxidation reactions.

2. UV-Vis spectrum of filtrate, after 5 h stirring of Ni-ONT with 30% H₂O₂.

Fig. S3. UV-Vis spectrum of filtrate, after 5 h stirring of Ni-ONT with 30% H₂O₂.

3. FTIR spectrum of Ni-ONT, before and after oxidation reactions.

Fig. S4. FTIR spectrum of Ni-ONT, before oxidation reactions.

Fig. S5. FTIR spectrum of Ni-ONT, after oxidation reactions.

4. Turn Over Frequency (TOF) of Cu-ONT. Table S1. TOF of Cu-ONT catalyzed oxidation with H₂O₂.

Substrates	Products	Conversion ^d	Selectivity ^d	TOF ^e
		(%)	(%)	(s^{-1})
Benzyl alcohol ^a	Benzaldehyde	25	81	11.25×10^{-4}
1-Phenylethanol ^a	Acetophenone	3	99	1.65×10^{-4}
1-Octanol ^a	1-Octanal	20	78	8.66×10^{-4}
2-Octanol ^a	2-Octanone	17	99	9.35×10^{-4}
Cinnamyl alcohol ^b	Cinnamaldehyde	17	87	8.21×10^{-4}
Cinnamaldehyde ^c	Cinnamic acid	16	67	5.96×10^{-4}
TMP ^a	TMQ	tr ^e	tr	-
Tetraline ^a	Tetralone	tr ^e	tr	-
Diphenylmethane ^a	Benzophenone	tr ^e	tr	-
α -Pinene ^a	α-Pinene oxide	15	83	6.92×10^{-4}
Styrene ^a	Styrene oxide	18	77	7.70×10^{-4}

Reaction conditions: [a] Cu-ONT (0.01 mmol), alcohols (1 mmol), 30% H₂O₂ (15 mmol), and CH₃CN (5 ml), were stirred at 60 °C for 5 h in air; [b] (0.01 mmol), substrate (1 mmol),

10% H₂O₂ (2 mmol), 5 ml CH₃CN, stirring 5 h at 60 °C. [c] Cu-ONT complex **1** (0.01 mmol), substrate (1 mmol), 30% H₂O₂ (3 mmol), 5 ml CH₃CN, stirring 5 h at 60 °C. [d] Determined by GC analysis on the basis of substrate charged with biphenyl as internal standard. [e] tr = trace. [f] TOF = Turn over number (TON) / s after 1 h.

5. Reuse of Ni-ONT.

Table S2. Reuse of Ni-ONT with H₂O₂ for oxidation reactions.

Reused Number	1	2	3	4	5
	Conversion ^c ,				
Substrate	Selectivity ^c				
	(%)	(%)	(%)	(%)	(%)
2-Octanol ^a	61,	62,	60,	61,	63,
	99	99	99	99	99
Cinnamaldehyde ^b	33,	32,	34,	33,	32,
	86	83	82	86	84
TMP ^a	56,	55,	56,	53,	55,
	90	92	94	91	89
				-	
Diphenylmetane ^a	58,	57,	57,	58,	56,
	99	99	99	99	99
~ 0					
Styrene ^a	41,	43,	40,	39,	41,
	87	88	87	89	88

Reaction conditions: [a] Ni-ONT (0.02 mmol), substrate (2 mmol), 30% H_2O_2 (2 mmol), stirring 5 hr at 25 °C. [b] Ni-ONT (0.02 mmol), substrate (2 mmol), 10% H_2O_2 (2 mmol), stirring 5 hr at 25 °C. [c] Determined by GC analysis on the basis of substrate charged with biphenyl as internal standard.