For

Cyclic Dipeptides: Catalyst/Promoter Free Rapid and Environmentally Benign Cyclization of Free Amino Acids

Nonappa,* Kari Ahonen, Manu Lahtinen,* and Erkki Kolehmainen*

Department of Chemistry, FI-40014, University of Jyväskylä, Finland

*Corresponding Authors: <u>nonappa@jyu.fi</u>; <u>manu.k.lahtinen@jyu.fi</u>; <u>erkki.t.kolehmainen@jyu.fi</u>

CONTENTS:

General Experimental Details	
Solution NMR measurements	.S2-S3
Representative procedure for the synthesis of DKP	\$3
Single Crystal X-ray data Collection and Packing Diagrams	
Spectral data of DKP derivatives and Microwave Reaction Profiles	

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

General experimental details

The DKP derivatives are synthesized starting from commercial amino acids. The starting materials are obtained from the commercial sources glycine, L-alanine, D-alanine, L-valine, L-Leucine, L-tyrosine, L-proline, D-proline, trans-4-hydroxy-L-proline, (S)-(-)-indoline-2-carboxylic acid and racemic pipecolic acid (Aldrich). All the solvents used from crystallization are of HPLC grade obtained from J.T.Baker (acetonitrile, N, N-dimethylformamide). Crystallization experiments were carried out taking a known amount of the compound in respective solvent or mixture of solvents and heated over an oil bath until the mixture turned into a clear solution and allowed to stand at room temperature. The crystallized samples were separated by filtration. Compounds 1-13 were synthesized in single-mode CEM Discover microwave reactor operating at 2450 MHz using 10 ml pressure vessel. Reaction times vary from 8 min to 25 min and temperature from 200°C to 250°C with controlled pressure and power. Molecular masses of the compounds were confirmed either by using Micromass LCT ESI-TOF mass spectrometer in positive ion mode or by VG AutoSpec 3500 HR-MS EI/CI high resolution mass spectrometer. IR spectra were recorded on Bruker Tensor 27 FT-IR using Pike GladiATR attenuated total reflectance (ATR) cell equipped with a diamond crystal plate. Elemental analyses were carried out using Elementar Vario EL III -analysator

Solution NMR measurements

All the liquid state 1D NMR spectra (¹H, ¹³C NMR) were recorded on a Bruker Avance DRX500 NMR spectrometer equipped with 5 mm dual direct detection BBO probehead operating at 500.13 MHz for ¹H and 125.77 MHz for ¹³C, respectively. The ¹H and ¹³C NMR experiments were carried out at 303 K for sample solution in CDCl₃ (99.8 %, Aldrich) and ¹H the chemical shifts referenced to the trace of CHCl₃ (7.26 ppm from int. TMS) or in DMSO- d_6 (99.8 %, Aldrich) with ¹H the chemical shifts referenced to the trace of DMSO- d_5 (2.50 ppm from int. TMS). The number of scans was 8, a $\pi/2$

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010 pulse length of 6.0 μ s, the flip angle 30°, with recycle delay 2 s, and 64K data points in time domain was collected which was zero filled to 128 K prior to FT. The ¹³C experiment was performed in composite pulse decoupling mode (waltz16) using a 30° flip angle. 400 scans were acquired with a recycle delay of 2 s. All the ¹³C spectra were processed with 1 Hz line broadening prior to FT and the chemical shifts referenced to the center peak of DMSO-*d*₆ heptet (39.50 ppm from int. TMS).

Representative procedure for the synthesis of DKP.

Glycine (324 mg, 4.31 mmol) was taken in a 10 mL microwave reaction vessel and added DMF (2 mL) and subjected for microwave reaction in CEM discover microwave reactor. The pre-stiring time was set to 15 s and the set point temp (220 °C) with hold time of 10 min. The reaction mixture turned clear when the temperature of 220 °C was attained and after 5 min the clear solutions turned into pale yellow and the reaction was stopped. The precipitate obtained upon cooling the reaction mixture to room temperature was filtered and dried to yield 234 mg (95%) of 1.

Single Crystal X-ray data:

The single crystal data were recorded with a Kappa APEX II diffractometer at -150 °C using graphite monochromatized Mo K_a ($\lambda = 0.71073$ Å; 55 kV, 30 mA) radiation. The data were processed with Denzo–SMN v0.97.638¹ and the absorption correction was performed using SADABS.² The structures were solved using direct methods (SIR2002³ and/or SHELXS–97⁴) and refined on F² by full matrix least squares techniques (SHELXL–97⁴) using anisotropic displacement parameters for non–hydrogen atoms. Compound dependently hydrogen atoms were either calculated to their positions as riding atoms or taken from the electron density map using isotropic displacement parameters, that were fixed to be 1.2–1.5 times larger than those of the attached non–hydrogen atom. The program Mercury⁵ was used for depicting the crystal structures. The determined crystal structures were compared to the formerly reported structures (when available) in Cambridge structural database (v 5.30+ 2009 updates).⁶

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Figure S1. Molecular packing of compound 1 along *a*- (top) and *b*-axis (below). Hydrogen bonding network is shown by dashed green lines.

Table S1. Crystallographic da	ta for compound 1
Compound	1
Formula	$C_4 H_6 N_2 O_2$
$MW (g mol^{-1})$	114.11
Temp (K)	123±2
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
a (Å)	3.9045(4)
b (Å)	11.5645(17)
c (Å)	5.1679(7)
β (°)	96.461(8)
$V(Å^3)$	231.87(5)
Z	2
$\rho_{calcd} (g \ cm^{-3})$	1.634
μ (mm ⁻¹)	0.133
F (000)	120
Crystal size (mm ³)	0.24 x 0.24 x 0.30
θ range (deg)	3.52 to 28.50°
Reflections collected	1467
Independent reflections	570
Data/restraints/parameters	570 / 0 / 41
GooF	1.083
R (int)	0.0258
Final R indices [I>2 σ (I)]	$R_1 = 0.0367$
	$wR^2 = 0.0852$
R indices (all data)	$R_1 = 0.0417$
	$wR^2 = 0.0885$
Largest diff. peak/hole (e $Å^{-3}$)	0.28 and -0.20

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010 **Table S1.** Crystallographic data for compound 1

Compound	1	-
O(1)-C(2)	1.2465(15)	
C(4)-N(3)#1	1.4556(15)	
C(4)-C(2)	1.5044(17)	
C(2)-N(3)	1.3273(17)	
N(3)#1-C(4)-C(2)	114.61(10)	
O(1)-C(2)-N(3)	122.53(12)	
O(1)-C(2)-C(4)	118.31(11)	
O(1)-C(2)-N(3)- C(4)#1	-178.36(12)	

Supplementary Material (ESI) for Green Chemistry 1

For 1 (#1) -x+2,-y,-z+1

Table S3. Hydrogen bond distances (Å) and angles (°) for 1						
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
		1				
N(3)-H(3)O(1)#2	0.890(16)	1.958(16)	2.8469(15)	177.6(13)		
C(4)-H(4B)O(1)#3	0.9900	2.5100	3.2781(16)	134.00		
For 1 (#2) -x+1,-y,-z (#3) x,-y-1/2,z-1/2						

Compound	9	11	12	13	
Formula	$C_{10}H_{14}N_2O_4\!\!\times\!\!2H_2O$	$C_{18}H_{14}N_2O_2$	$C_7 H_{10} N_2 O_2$	$C_{12}H_{18}N_2O_2$	
MW (g mol ⁻¹)	262.26	290.31	154.17	222.28	
Chiral properties	L-form	Racemic	L-form	meso	
Temp (K)	123±2	123±2	123±2	123±2	
Crystal system	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	$P2_1/c$ (No. 14)	
a (Å)	7.7534(16)	10.5612(14)	5.8353(3)	6.0475(7)	
b (Å)	8.0651(16)	8.4166(5)	9.6510(6)	7.8473(10)	
c (Å)	18.818(4)	15.8706(19)	12.8178(10)	11.2904(12)	
β (°)	90	107.860(4)	90	97.541(7)	
V (Å ³)	1176.7(4)	1342.7(3)	721.85(8)	531.17(11)	
Ζ	4	4	4	2	
$\rho_{calcd} (g \ cm^{-3})$	1.480	1.436	1.419	1.390	
μ (mm ⁻¹)	0.123	0.095	0.106	0.095	
F (000)	560	608	328	240	
Crystal size (mm ³)	0.12 x 0.23 x 0.24	0.08 x 0.12 x 0.36	0.24 x 0.32 x 0.36	0.20x0.28 x0.30	
$\hat{\theta}$ range (deg)	2.75 to 28.31	3.84 to 26.00	3.82 to 28.26	3.17 to 28.53	
Reflections collected	9344	7809	4138	2989	
Independent reflections	2893	2627	1777	1334	
Data/restraints /parameters	2893 / 0 / 187	2627 / 0 / 200	1777 / 0 / 140	1334 / 0 / 73	
GooF	1.035	1.034	1.073	1.056	
R (int)	0.0428	0.1095	0.0434	0.0462	
Final R indices $[I>2\sigma(I)]$ R indices (all data) Largest diff. peak/hole (e δ^{-3})	R1 = 0.0429 wR2 = 0.0841 R1 = 0.0557 wR2 = 0.0881 0.25 and -0.19	R1 = 0.0734 wR2 = 0.1142 R1 = 0.1714 wR2 = 0.1447 0.30 and -0.26	R1 = 0.0476 wR2 = 0.0991 R1 = 0.0637 wR2 = 0.1064 0.198 and -0.25	R1 = 0.0637 wR2 = 0.1325 R1 = 0.0985 wR2 = 0.1458 0.33 and -0.24	
CCDC	783550	783551	783552	783553	

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010 **Table S4.** Crystallographic data for compounds 9, 11–13.

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010. **Table S5.** Selected bond lengths (Å) and angles (deg), as well as torsion angles (deg) with e.s.d.s for

Compound	9	11	12	13
C(1)-O(1)	1.242(2)	1.227(4)	1.245(2)	1.230(2
C(4)-O(2)	1.241(2)	1.226(4)	1.235(2)	_
C(1)-N(2)	1.326(2)	1.346(5)	1.326(3)	1.339(3)
C(4)-N(5)	1.329(2)	1.350(5)	1.342(3)	_
C(3)-C(4)	1.513(3)	1.513(5)	1.508(3)	_
C(1)-C(6)	1.515(2)	1.516(5)	1.510(3)	_
C(1)-C(2)	-	_	_	1.521(3)
C(3)-N(2)	1.479(2)	1.484(4)	1.472(3)	_
N(2)-C(2)#1	_	_	_	1.465(3)
O(1)-C(1)-N(2)	122.79(17)	125.4(4)	123.15(19)	123.58(18)
O(1)-C(1)-C(6)	122.13(15)	121.9(4)	122.22(18)	_
O(1)-C(1)-C(2)	_	_	-	117.75(18)
N(2)-C(1)-C(6)	115.05(15)	112.8(3)	114.63(18)	_
N(2)-C(1)-C(2)	-	_	_	118.65(17)
N(2)-C(3)-C(4)	112.55(13)	111.5(3)	110.17(16)	_
N(2)#1-C(2)-C(1)	-	_	_	115.14(16)
O(2)-C(4)-N(5)	123.13(18)	124.8(3)	123.5(2)	_
O(2)-C(4)-C(3)	121.07(15)	122.1(3)	122.5(2)	_
N(5)-C(4)-C(3)	115.80(15)	113.0(3)	113.95(17)	_
N(2)-C(3)-C(4)-O(2)	-151.93(16)	-143.3(3)	141.4(2)	
N(2)-C(3)-C(4)-N(5)	28.6(2)	39.2(4)	-38.7(2)	
O(1)-C(1)-C(6)-N(5)	-145.18(17)	-143.6(3)	147.3(2)	
C(13)-C(3)-C(4)-N(5)	-	158.7(3)	-	
C(9)-C(3)-C(4)-N(5)	144.20(17)	-	155.78(19)	
O(1)-C(1)-N(2)-C(7)	6.5(3)	-1.2(6)	2.3(3)	_
O(1)-C(1)-C(2)-N(2)#1	_	_	_	175.44(19)
O(1)-C(1)-C(2)-C(3)	_	_	_	-60.5(2)
O(1)-C(1)-N(2)-C(6)#1	_	_	-	-0.5(3)

compounds 9, 11-13.

For **13**: (#1) -x,-y+1,-z+1

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)				
9								
O(5W)-H(5AW)O(6W)	0.87(3)	1.93(3)	2.798(2)	177(3)				
O(5W)-H(5BW)O(2)#1	0.89(3)	1.90(3)	2.790(2)	177(3)				
O(6W)-H(6AW)O(1)#2	0.95(3)	1.74(3)	2.679(2)	170(2)				
O(3)-H(3H)O(5W)#3	0.85(3)	1.96(3)	2.807(2)	173(3)				
O(6W)-H(6BW)O(4)#4	0.86(3)	1.86(3)	2.715(2)	174(3)				
O(4)-H(4H)O(6W)#2	0.91(3)	1.82(3)	2.718(2)	167(3)				
C(3)-H(3)O(2)#5	1.0000	2.3500	3.208(2)	144.00				
C(7)-H(7A)O(3)#6	0.9900	2.5300	3.477(3)	161.00				
	1	1						
C(3)-H(3)O(1)#1	1.0000	2.4500	3.222(5)	134.00				
C(3)-H(3)O(2)#2	1.0000	2.4900	3.245(5)	132.00				
C(8)-H(8)O(1)	0.9500	2.4500	2.991(6)	116.00				
C(8)-H(8)O(2)#3	0.9500	2.5800	3.345(5)	138.00				
C(15)-H(15)O(1)#4	0.9500	2.3800	3.220(5)	147.00				
C(15)-H(15)O(2)	0.9500	2.4700	3.006(5)	116.00				
	12	2						
N(5)-H(5)O(1)#1	0.86(3)	1.96(2)	2.815(2)	175(3)				
C(3)-H(3)O(1)#2	0.95(2)	2.55(2)	3.205(3)	126.2(15)				
C(6)-H(6A)O(2)#3	0.98(2)	2.52(3)	3.478(3)	166(2)				
13								
C(6)-H(6A)O(1)	0.9900	2.3500	2.769(3)	105.00				
C(6)-H(6B)O(1)#2	0.9900	2.4900	3.468(3)	169.00				

Table S6. Hydrogen bond distances (Å) and angles (°) of compound 9, 11-13.

For **9**: (#1) -x-1,y+1/2,-z+1/2; (#2) x+3/2,-y+1/2,-z; (#3) -x,y-1/2,-z+1/2; (#4) x-1,y,z #5 -x,y+1/2,-z+1/2 #6 -x-1,y-1/2,-z+1/2; For **11**: (#1) -x+1,y+1/2,-z+1/2; (#2) -x+1,y-1/2,-z+1/2; (#3) x,y-1,z; (#4) x,y+1,z; For **12**: (#1) x+5/2,-y+1/2,-z; (#2) x+3/2,-y+1/2,-z; (#3) x+5/2,-y-1/2,-z; For **13**: (#1) -x,-y+1,-z+1; (#2) - x+2,y-1/2,-z-1/2;

Figure S2. Overlay of molecular conformations of compound **11** and enantiopure structure form COSGEX found in CSD

Figure S3. Molecular packing of compound **11** (left) and CSD entry COSGEX (right) viewed along *b*-axis. Hydrogen atoms are omitted for clarity.

Figure S4. Repeating unit of compound **11.** The two molecules in the middle are pointing towards the viewer and are facing each other.

Figure S5. Weak hydrogen bonding network in compound 13.

Spectral data and microwave reaction profiles of DKP derivatives

2,5-diketopiperazine (1): Scale (324 mg, 4.31 mmol): yield (234 mg mg, 95%); m.p.: 298-301 °C; ¹H NMR (500 MHz, D₂O) δ 3.56 (s, CH₂) ppm; ¹³C NMR (126 MHz, D₂O) δ 168.47, 43.84 ppm. IR (solid)v 3040, 2983, 2913, 1667, 1466, 1437, 1336, 1249, 1072, 829, 804 cm⁻¹; HRMAS (*m/z*) calcd for C₄H₆N₂O₂ [M+H]⁺,115.1106; found, 115.9878.

Type: Dynamic	Stage	Temp(C)	Time(mm:ss)	Pressure(BAR)	Power(W)	PowerMAX	Stirring
	1	150	20:00	17.2	100	No	High
Sraphs	æ 23.1	0.4		300 4			_
	VII) 15.1 10.1 5.1 0.1	0000 02:00	04:00 05:00 00:00	(M) 200- 100- 100- 0 10:00 00	V-V	MULLIN HOL OR OF O	8-00 10-00
Method Summary			ranse (manao)			time (narcas)	
Reaction started: HOT KEY: Changed temp from 150 HOT KEY: Changed temp from 180 HOT KEY: Changed power from 100 Temperature setpoint reached: HOT KEY: Changed temp from 200 HOT KEY: Changed time from 02:44 HOT KEY: Changed time from 00:44 Reaction cooling started: Cooling/Reaction ended:	C to 1 C to 2 0 W to 2 to 0 9 to 0 4 to 00	180 C 200 C 150 W 210 C 4:00 1:00 0:10	10 10 10 10 10 10 10 10 10 10	/5/2009 1:40:04 /5/2009 1:41:24 /5/2009 1:42:51 /5/2009 1:43:00 /5/2009 1:44:45 /5/2009 1:45:09 /5/2009 1:46:54 /5/2009 1:48:06 /5/2009 1:48:23 /5/2009 1:48:34 /5/2009 1:50:02	PM PM PM PM PM PM PM PM PM PM		
Reaction Completed Successfully! Maximum temperature:			21	5 C			
Maximum pressure: Time to obtain setpoint: Time at setpoint: Time cooling:			6 E 04 03 01	3AR :41 mm:ss :49 mm:ss :28 mm:ss			

rac-3,6-dimethylpiperazine-2,5-dione (2 & 3): Scale (330 mg, 3.7 mmol); yield (245 mg, 93%); m.p: 260-263 °C; ¹H NMR (500 MHz, D₂O) δ 4.27(q, *J* = 13.6 Hz, 1H), 4.23 (q, *J* = 13.5 Hz, 1H), 1.55 (d, *J* = 6.97 Hz, 3H), 1.52 (d, *J* = 6.97 Hz, 3H) ppm; ¹³C NMR (126 MHz, D₂O) δ 171.38, 171.34, 50.42, 50.25, 19.41, 18.33 ppm; IR(solid)v 3049, 2975, 1688, 1667, 1620, 1590, 1330, 1128, 848 cm⁻¹; HRMAS (*m/z*): calcd for C₆H₁₀N₂O₂, [M+H]⁺: 143.0820; found, 143.085; analysis calcd. for C₆H₁₀N₂O₂: C, 50.69; H, 7.09; N, 19.71. found C, 50.60; H, 7.12; N, 19.02.

rac-3,6-diisopropylpiperazine-2,5-dione (4): Scale (340 mg, 2.90 mmol); yield (262 mg, 91%); m.p.:259-263 °C ¹H NMR (500 MHz, CD₃OD) δ 3.84 (d, *J* = 3.0 Hz, 2H), 2.36-2.27 (m, 2H), 1.04 (d, *J* = 7.5 Hz, 6H), 0.95 (d, *J* = 7.0 Hz, 6H) ppm; ¹³C NMR (126 MHz, CD₃OD) δ 171.41, 61.85, 34.61, 19.57, 17.68 ppm; IR (solid) v 3188, 2964, 1664, 1450, 1349 cm⁻¹; HRMS (*m/z*) calcd for C₁₀H₁₈N₂O₂[M.CH₃OH+Na]⁺ 253.1528; found 253.087; analysis calc. for C₁₀H₁₈N₂O₂.1/2H₂O: C, 57.95; H, 9.24; N, 13.52. found C, 57.94; H,8.91; N, 13.69.

rac-cyclo(leucyl-leucine) (5): Scale (580 mg, 4.42 mmol); yield (468 mg, 93%); m.p.: 270-272 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.56 (br s, 1H,), 6.49 (br s, 1H), 3.99 (br s,

1H), 3.97 (m, 1H), 2.16 (s,1H), 1.88-1.75 (br m, 4H) 1.67-1.59 (br m, 2H), 0.99 (d, 6H), 0.99 (dd, 2.17, J = 6.27 Hz, 6H), 0.95 (d, 6.27) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 168.98, 168.86, 53.35, 53.18, 43.39, 42.11, 24.30, 24.22, 23.22, 23.13, 21.30, 21.15 ppm; IR (solid) v 3088, 2974, 1655, 1445, 1291 cm-¹; HRMS (*m/z*) calcd for C₁₂H₂₂N₂O₂ [M.CH₃OH+Na]⁺ 281.1841; found 281.090; analysis calcd. for C₁₂H₂₂N₂O₂: C, 63.68; H 9.80; N 12.38. found C, 63.27; H, 9.58; N, 12.40.

rac-cyclo(tyrosyl-tyrosine) (5): Scale (296 mg, 1.63 mmol); yield (231mg, 88%); m.p.: 279-280 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 9.18 (s, 2H), 7.87 (s, 2H), 6.90 (d, J = 8.30 Hz, 2H), 6.61(d, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 8.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 3.30 Hz, 2H), 2.88(dd, J = 3.30, 13.70 Hz, 2H), 2.60(dd, J = 3.30), 3.80

4.60, 13.75 Hz, 2H) ppm; ¹H NMR (500 MHz, DMSO- d_6 +D₂O) δ 6.89 (d, J = 8.35 Hz), 6.61(d, J = 8.35 Hz), 3.29 (t, J = 3.75 Hz), 2.89 (dd, J = 3.30, 14.0Hz), 2.60 (dd, J = 4.74, 14.0 Hz) ppm; ¹³C NMR (126 MHz, DMSO- d_6) δ 166.96, 155.99, 130.97, 125.79, 114.73, 54.78, 36.94 ppm; IR (solid) v 3229, 3021, 2956, 2923, 1660, 1608, 1593, 1507, 1450, 1360, 1235, 1113, cm⁻¹; HRMS (m/z) calcd for C₁₈H₁₈N₂O₄ [M+Na]⁺ 349.1164; found, 349.1162; analysis calcd. for C₁₈H₁₈N₂O₄.H₂O: C, 62.78; H, 5.85; N 8.13. found C, 62.99; H, 5.93; N, 8.99.

rac-octahydrodipyrrolo[1,2-a:1',2-d]pyrazine-5,10-dione (7 & 8)): Scale (250 mg,

2.17 mmol); yield (203 mg, 96%); m.p.:146-148 °C; ¹H NMR (500 MHz, CDCl₃) δ 4.16

(t, J = 8.13 Hz, 2H, 5a-H, 10a-H), 3.57-3.49 (m, 4H, 3-CH₂, 8-CH₂), 2.34-2.28 (m, 2H, CH₂), 2.22-2.14 (m, 2H, CH₂), 2.05-1.98 (m, 2H, CH₂), 1.95-1.86 (m, 4H, 2 x CH₂) ppm. ¹³C NMR (126 MHz, DMSO- d_6) δ 166.37, 60.54, 45.20, 27.68, 23.34 ppm. IR (solid) v 2990, 2957, 2877, 1643, 1426, 1334, 1293, 1271, 1150, 875 cm⁻¹; HRMS (*m/z*) calcd for C₁₀H₁₄N₂O₂ [M+H]⁺ 195.1133; found, 195.109; analysis calcd. for C₁₀H₁₄N₂O₂: C 61.84; H 7.27; N 14.42. found C, 61.03; H, 7.12; N, 14.26.

Type: Dynamic	Stage	Temp(C)	Time(mm:ss)	Pressure(BAR)	Power(W)	PowerMAX	Stirring
	1	220	25:00	17.0	200	No	High
Graphs							
9 200 100 0 200 0 200 0 200 0 200 0 200 0 200 1000 0 200 0 200 0 0 200 0 200 0 200 0 200 0 200 0 200 0	(8 20.0 15.0 10.0 5.0 0,0		0:10 C0:15 00:29 00:25 Time (hhemm)	00 00 00 00 00 00 00 00 00 00 00		0 00:15 00:20 0 Time (hitema)	
Method Summary							
Reaction started: HOT KEY: Changed temp from 220 HOT KEY: Changed temp from 230 Temperature setpoint reached: HOT KEY: Changed power from 20 Reaction cooling started: Cooling/Reaction ended:	0 C to 2 0 C to 2 10 W to	230 C 225 C 9 100 W	8/1 8/1 8/1 8/1 8/1	11/2009 11:14:2 11/2009 11:16:2 11/2009 11:18:4 11/2009 11:18:4 11/2009 11:18:4 11/2009 11:43:4 11/2009 11:46:0	6 AM 5 AM 5 AM 6 AM 7 AM 8 AM 2 AM		
Reaction Completed Successfully!							
Maximum temperature: Maximum pressure: Time to obtain setpoint: Time at setpoint: Time cooling:			22 10 04 25 02	8 C BAR :20 mm:ss :02 mm:ss :14 mm:ss			

(2*R*,4*S*,7*R*,9*S*)-2,7-dihydroxyoctahydrodipyrrolo[1,2-*a*:1',2'-*d*]pyrazine-5,10-dione (9): Scale (310 mg, 2.36 mmol); yield (257 mg, 96%); m.p.: 243-245 °C; $[\alpha]^{D}_{25}$ (deg cm³ g⁻¹ dm⁻¹) = -152 (*c* = 2.0 g cm⁻³ in H₂O); ¹H NMR (500 MHz, DMSO-*d*₆) δ 5.10(br s), 4.51 (dd, *J* = 6.72, 10.52 Hz), 4.30 (br s), 3.47 (dd, *J* = 4.37, 12.27), 3.20 (d, *J* = 12.35 Hz), 2.06 (d, *J* = 6.75 Hz), 2.04 (d, *J* = 6.65 Hz), 1.97 (d, *J* = 4.20 Hz), 1.95 (dd, *J* = 2.30, 4.50 Hz), 1.93 (d, *J* = 4.30 Hz) ppm; ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.30, 67.42, 58.29, 53.38, 36.41 ppm; IR (solid) v 3401, 3287, 3193, 2965, 2867, 1634, 1464, 1436, 968 cm⁻¹; HRMAS (*m/z*) calcd for C₁₀H₁₄N₂O₄ [M+Na]⁺ 249.1578; found, 249.0829; analysis calcd. for C₁₀H₁₄N₂O₄.2H₂O: C, 45.79; H, 6.91; N 10.68. found C, 45.30; H, 6.74; N, 10.68.

(6a,7,13a,14)-tetrahydropyrazino[1,2-*a*:4,5-*a*']diindol-6,13-dione (11): Scale (190 mg, 1.16); yield (160 mg, 94%); m.p.:250-252 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.97 (d, *J* = 7.71 Hz, 2H, 2,9-H), 7.35 (d, *J* = 7.52 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 4H, 3,4,10,11-H), 7.10 (dt, *J* = 1.06, 7.47 Hz, 2H, 1,8-H), 5.33 (dd, *J* = 8.8, 16.9 Hz, 2H, 6a, 13a-H), 3.58 (dd, *J* = 8.8, 16.8 Hz, 2H, 7,14-H), 3.43 (dd, *J* = 8.8, 16.8 Hz, 2H, 7,14-H) ppm; ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.69, 140.37, 130.09, 127.38, 125.25, 124.36, 114.58, 60.98, 29.14 ppm; IR (solid) v 3344, 3069, 3050, 2898, 2863, 1793, 1681, 1603, 1483,1462, 1446, 1343, 1315, 1245 776 cm⁻¹; HRMAS: calcd for C₁₈H₁₄N₂O₂ [M+Na]⁺ 313.0952; found, 313.0945; analysis calcd. for C₁₈H₁₄N₂O₂): C,74.47; H, 4.86; N 9.65. found C, 74.32; H, 4.69; N, 9.64.

(*R*)-hexahydropyrrolo[1,2-*a*]pyrazine-1,4-dione (12): Scale (210 mg, 1.22 mmol); yield (186 mg, 99%); m.p.:188-190 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.03 (br s, 1H), 4.11 (t, *J* = 7.25 Hz, 1H), 3.98(dd, *J* = 16.4 Hz, 1.05 Hz). 3.50 (dd, 1H), 3.34-3.39 (m, 1H), 3.35-3-31(m, 1H), 2.15-2.10 (m, 1H), 1.87-1.77 (m, 2H) ppm; ¹³C NMR (126 MHz, DMSO-*d*₆) δ 169.14, 163.72, 57.89, 45.82, 44.53, 27.75, 21.95 ppm; IR (solid) v 3162, 2877, 1673, 1643, 1453, 1293, 1111, 1003, 779 cm⁻¹; HRMS calcd for C₇H₁₀N₂O₂ [M+H]⁺ 155.0820; found, 155.053; analysis calcd. for C₇H₁₀N₂O₂): C, 54.54; H, 6.54, N,18.17. found C, 54.00; H, 6.38; N, 18.17.

(6a*R*, 12a*S*)-octahydrodipyrido[1,2-a:1',2'-*d*]pyrazine-6,12(2*H*, 6a*H*)-dione (13): Scale (232 mg, 1.79 mmol); yield (185 mg, 93%); m.p.: 245-247 °C; ¹H NMR (CDCl₃, 500 MHz) δ 4.70 (t, *J* = 2.05 Hz, 1H), 4.67 (t, *J* = 2.25 Hz, 1H), 3.82 (d, *J* = 2.4Hz, 1H), 3.80 (d, *J* = 1.95Hz, 1H), 2.48(dt, *J* = 13.05 Hz, 3.05 Hz), 2.40 (br d, *J* = 13 Hz), 1.99 (br d, *J* = 13 Hz), 1.61-1-52 (m, 4 H), 1.49, 1.36 (m, 4 H) ppm; ¹³C NMR (CDCl₃, 126 MHz) δ 164.24, 58.69, 42.50, 31.82, 24.52 ppm; IR (solid) v 2967, 1636, 1568, 1447, 767 cm⁻¹; HRMS (*m*/*z*) calcd for C₁₂H₁₈N₂O₂ [M+H]⁺ 223.1446; found, 223.107; analysis calcd. for C₁₂H₁₈N₂O₂: C, 64.84; H, 8.16; N, 12.60. found C, 64.65; H, 8.16; N, 12.56.

