SUPPORTING INFORMATION

Iron (III)-based ionic liquid-catalyzed regioselective benzylation of arenes

and heteroarenes

Jian Gao^a, Jin-Quan Wang^b, Qing-Wen Song^a, Liang-Nian He^{a,*}

 ^a State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
^b Institute of Process Engineering, Chinese Academy of Sciences

heln@nankai.edu.cn

Table of Contents

General experimental methods	2
Synthetic procedure of various ionic liquids	2
Synthetic procedure for the synthesis of benzylic acetates from benzylic alcohols	6
General procedure for the benzylation of arenes and heteroarenes	6
Characterization of various ionic liquids	7
Characterization of benylated reagents	8
Characterization of the benzylated products	8
References	11
The ¹ H NMR and ¹³ C NMR charts of various ionic liquids	12
The ¹ H and ¹³ C NMR charts of the benzylated reagents	15
The ¹ H and ¹³ C NMR charts of the benzylated products	17
The GC-MS charts of ethane-1,1-diyldibenzene and 4-benzyl-1,2-dimethylbenzene	26
Thermal gravimetric analysis of the iron-containing ionic liquids	27

General experimental methods: All reactions were carried out without any special precautions against air.All reagents were obtained commercially without further purification. Toluene and diethyl ether were freshly distilled over sodium under nitrogen. Dichloromethane was distilled from calcium hydride. ¹H NMR spectra was recorded at Bruck 300 and 400 or Varian Mercury-Plus 400 spectrometer in CDCl₃ or D₂O and TMS (0 ppm) was used as internal reference, ¹³C NMR was recorded at 75 MHz or 100.6 MHz in CDCl₃ or D₂O and CDCl₃ (77.0 ppm) was used as internal reference. ESI-MS were recorded on a Thermo Finnigan LCQ Advantage spectrometer in ESI mode with a spray voltage of 4.8 kV. GC-MS were recorded on a Thermo Finnigan Polaris Q GC/MS. Infrared (IR) spectra were recorded on a Bruker Tensor27 FT-IR spectrophotometer with KBr pellets. Raman spectroscopy were recorded on a Bruker RFS100/S Raman spectrometer. The products were analyzed on a gas chromatograph (Shimadzu 2014 chromatographer) equipped with a RTX-5 capillary column $(30 \text{ m} \times 0.25 \text{ mm})$ using a flame ionization detector (FID). UV-Vis spectra were measured in acetonitrile (800-200 nm) on a Shimadzu UV-2450 spectrophotometer. Density values (d) were obtained by measuring the weight of the sample in a 1 cm³ pycnometer held under 20 °C. ICP was measured on a ICP-9000 (N+M) Inductively coupled plasma emission spectrometer. The thermal stability of the iron-containing ionic liquids and their decomposition behaviour were measured on a PTC-10A TG-DTA analyzer (Japan, Rigaku). The samples (about 4.0-6.0 mg) were scanned from room temperature to 800 °C under air flow with a heating rate of 10 °C/min. Values for the onset degradation temperature (T_d) and peak temperature (T_p) were determined from the derivative TGA curves.

(1) Synthetic procedure of various ionic liquids:

Procedure for the synthesis of 1-n-butyl-3-methylimidazolium bromide (C₄mimBr):

Scheme S1. Synthesis of C₄mimBr.

C₄mimBr was synthesized according to the reported literatures.^[1] In a 100 ml round-bottom flask, 1-methylimidazole (8.21 g, 0.1 mol) was mixed with n-butyl bromide (16.44 g, 0.12 mol) $\frac{100}{52}$ and allowed to reflux for 24 h at 70 °C. The excess n-butyl bromide was distilled off under reduced pressure and the residue was finally extracted thoroughly 2-3 times (50 mL each) with diethyl ether to remove the traces of unreacted starting materials. A white solid of 1-n-butyl-3-methylimidazolium bromide was obtained in 87% yield.

Procedure for the synthesis of C4mimCl:

Scheme S2. Synthesis of C₄mimCl.

C₄mimCl was synthesized using the same method for the synthesis of C₄mimBr. C₄mimCl was obtained with a 72% yield.

Procedure for the synthesis of C4mimBF4:

Scheme S3. Synthesis of C₄mimBF₄.

To a solution of C_4 mimBr (2.1912 g, 10 mmol) in acetone (10 mL) at room temperature was added sodium tetrafluoroborate (1.0979 g, 10 mmol). Afer 24 h stirring, the reaction mixture was filtered and the volatiles were removed under reduced pressure. Drying in vacuo for 10 h afforded 1-butyl-3-methylimidazolium tetrafluoroborate as a light yellow liquid.

Procedure for the synthesis of C₄mim-FeCl₄^[2]

Scheme S4. Synthesis of C₄mim-FeCl₄.

Synthesis of iron-containing ionic liquid with a molar ratio of 1:1 for the starting materials: Butylmethylimidazolium chloride (1.75 g, 10 mmol) and anhydrous $FeCl_3$ (1.62 g, 10 mmol) were mixed in a round bottom flask and stirred under argon atmosphere. Almost immediately an endothermic reaction took place and provided C₄mim-FeCl₄ as a dark brown oil. The mixture was dried for 2 days at 80 °C under vacuum for the benzylation reaction.

For the synthesis of iron containing ionic liquid with other molar ratio of the starting materials, the procedure was identical with that above. And following this method, two kinds of iron containing ionic liquids with the molar ration of the starting materials 1:1.2 and 1:2.0 could be synthesized easily.

These iron-containing IL were characterized via Raman spectroscopy and proved to be identical with authentic material reported in literature.^[3]

Figure S1. Raman-spectra of C₄mim-FeCl₄(1:1).

The peak at 333 cm⁻¹ is due to $FeCl_4^-$, indicating that the anion of this iron-containing IL is $FeCl_4^-$.

Figure S2. Raman-spectra of C₄mim-FeCl₄ (1:1.2).

The peak at 333 cm⁻¹ is due to $FeCl_4^-$, indicating that the anion of this iron-containing IL is $FeCl_4^-$.

Figure S3. Raman-spectra of C₄mim-FeCl₄(1:2.0).

The peak at 333 cm⁻¹ is due to FeCl_4 , indicating that the anion of this iron-containing IL is FeCl_4 .

Procedure for the synthesis of C₄mim-FeCl₃Br (1:1)

C₄mimBr

C₄mim-FeCl₃Br

Scheme S5. Synthesis of C₄mim-FeCl₃Br.

 C_4 mim-FeCl₃Br (1:1) was synthesized from C_4 mimBr and anhydrous FeCl₃ using the same method for the synthesis of C_4 mim-FeCl₄ (1:1).

(2) Synthetic procedure for the synthesis of benzylic acetates from benzylic alcohols^[4]:

Scheme S6. Synthesis of benzylic acetates from benzylic alcohols.

Into a round-bottom flask equipped with a magnetic stirbar was added the corresponding alcohol (10-50 mmol, 1.0 equiv.) and dichloromethane (50-100 mL, ~ 0.5 M). The reaction mixture was cooled to 0 °C in an ice bath and treated with pyridine (13-65 mmol, 1.3 equiv.) and then acetic anhydride (13-65 mmol, 1.3 equiv.) was added drop-wise over 10 minutes. The resulting solution was warmed to room temperature and stirred for 16 h overnight. The reaction mixture was concentrated under reduced pressure and the crude residue poured into a 250 mL separatory funnel containing 1 M aqueous HCl (125 mL) and extracted with diethyl ether (3 × 75 mL). The combined organic layers were washed with brine (75 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography through silica gel to afford the desired product.

(3) General procedure for the benzylation of arenes and heteroarenes:

Benzylation of *o*-xylene: In a 25 mL Schlenk tube with a magnetic stirbar, 1-phenylethyl acetate (1 mmol, 0.1642 g) and catalyst (10 mmol%, 0.1 mmol) were added. And then *o*-xylene (1 mL, 8.4 mmol) was added. After stirring for 12 h at 80 °C aliquots were taken from the reaction mixture and subjected to GC analysis for determination of yield and conversion. For isolation of the products, after the reaction, the crude was extracted with toluene, and the organic phase was dried over MgSO₄ and the solvents were distilled off. The product was purified by silica gel column chromatography (200-300 mesh, petroleum ether or hexane as the eluant).

Recycling of the catalyst C₄mim-FeCl₄: After complete reaction there are two phases including the upper *o*-xylene layer which containing the product and the nether layer which containing the iron-containing ionic liquid. The upper *o*-xylene layer containing the product was first decanted and the remaining product was extracted by washing the residue for six times with 4 mL of toluene each. After that the residue was kept under vacuum for 1 h to remove the toluene. Then fresh *o*-xylene and 1-phenylethyl acetate were added to the remaining C₄mim-FeCl₄ layer for the next run of the reaction. The iron content of the fresh and the recovered catalyst determined by ICP method was found to be 15.05%, 14.92%, respectively.

(4) Characterization of various ionic liquids:

1-n-butyl-3-methylimidazolium bromide (C4mimBr):

¹H NMR(300 MHz, D₂O): $\delta = 0.82(t, {}^{3}J_{HH} = 7.4 \text{ Hz}, 3\text{H}, \text{H}); 1.23(\text{m}, 2\text{H}, \text{H}); 1.75(\text{m}, 2\text{H}, \text{H}); 3.79(\text{s}, 3\text{H}, \text{H}); 4.10(t, {}^{3}J_{HH} = 7.2 \text{ Hz}, 2\text{H}, \text{H}); 7.33(\text{s}, 1\text{H}, \text{H}); 7.38(\text{s}, 1\text{H}, \text{H}); 8.61(\text{s}, 1\text{H}, \text{H});$ ¹³C NMR(100.6 MHz, D₂O): $\delta = 12.64; 18.74; 31.25; 35.67; 49.27; 122.20; 123.45; 135.82;$ ESI-MS (4.8 kV): m/z (%) =139.0 (100) [M-Br]⁺, 78.9 (100) [M-C_8H_{15}N_2]⁻.

1-n-butyl-3-methylimidazolium chloride (C₄mimCl):

¹H NMR(400MHz, CDCl₃): $\delta = 0.93(t, {}^{3}J_{HH} = 7.6$ Hz, 3H, CH₃); 1.30-1.40(m, 2H, CH₂); 1.83-1.90(m, 2H, CH₂); 4.09(s, 3H, CH₃); 4.30(t, {}^{3}J_{HH} = 7.4 Hz, 3H, NCH₃); 7.37(s, 1H, CH); 7.50(s, 1H, CH); 10.73(s, 1H, CH); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 13.36$; 19.40; 32.09; 36.51; 49.76; 121.64; 123.29; 138.24; ESI-MS (4.8 kV): *m/z* (%) =139.0 (100) [M-Cl]⁺.

1-butyl-3-methylimidazolium tetrafluoroborate (C₄mimBF₄):

¹<u>H NMR(400 MHz, D₂O): $\delta = 0.84(t, {}^{3}J_{HH} = 7.4 \text{ Hz}, 3H, CH_{3}); 1.19-1.28(m, 2H, CH_{2}); 1.73-1.80(m, 2H, CH_{2}); 3.81(s, 3H, CH_{3}); 4.11(t, {}^{3}J_{HH} = 7.2 \text{ Hz}, 3H, NCH_{3}); 7.34(s, 1H, CH); 7.39(s, 1H, CH); 8.61(s, 1H, CH). {}^{13}C NMR(100.6 \text{ MHz}, D_{2}O): \delta = 12.56; 18.69; 31.21; 35.54; 49.22; 122.15; 123.41; 135.79; ESI-MS (4.8 kV): <math>m/z$ (%) =139.0 (100) [M-BF₄]⁺, 87.0 (100), [M-C₈H₁₅N₂]⁻.</u>

C₄**mim-FeCl**₄ (1:1): IR (KBr) 3149, 3116, 2960, 2933, 1641, 1567, 1164 cm⁻¹. ESI-MS (4.8 kV): m/z (%) = 139.25 (100) [M-FeCl₄]⁺, 197.97 (100) [M-C₈H₁₅N₂]⁻. <u>UV-vis (acetonitrile)</u> λ_{max} (ε): 359 (7.7×10³), 307 (1.1×10³), 268 (7.3×10³), 262 (6.7×10³), 213 (8.9×10⁴) nm. d, 1.40

<u>g cm⁻³; T_d, 294 °C; T_p, 402 °C.</u>

C₄**mim-FeCl**₄ (1:1.2): IR (KBr) 3160, 3117, 2964, 2939, 1641, 1569, 1166 cm⁻¹. ESI-MS (4.8 kV): m/z (%) = 139.25 (100) [M-FeCl₄]⁺, 197.96 (100) [M-C₈H₁₅N₂]⁻. <u>UV-vis (acetonitrile)</u> λ_{max} (ε): 358 (7.9×10³), 307 (1.2×10⁴), 241 (1.4×10⁴), 213 (2.4×10⁴) nm. d, 1.39 g cm⁻³; T_d, 287 °C; T_p, 412 °C.

C₄**mim-FeCl**₄ (1:2.0): IR (KBr) 3164, 3119, 3002, 2966, 2941, 1641, 1570, 1168 cm⁻¹. ESI-MS (4.8 kV): m/z (%) = 139.25 (100) [M-FeCl₄]⁺, 197.96 (100) [M-C₈H₁₅N₂]⁻. <u>UV-vis</u> (acetonitrile) λ_{max} (ε): 357 (5.9×10³), 309 (8.1×10³), 238 (9.8×10³), 212 (2.1×10⁴) nm. d, 1.48 <u>g cm⁻³; T_d, 270 °C; T_p, 400 °C.</u>

C₄**mim-FeCl₃Br (1:1):** IR (KBr) 3149, 3116, 2960, 2933, 1641, 1567, 1164 cm⁻¹. ESI-MS (4.8 kV): m/z (%) = 139.0 (100) [M-FeCl₃Br]⁺, 241.7 (100) [M-C₈H₁₅N₂]⁻. <u>UV-vis (acetonitrile)</u> λ_{max} (ϵ): 358 (4.9×10³), 309 (7.1×10³), 239 (7.4×10³), 213 (2.8×10⁴) nm. *d*, 1.51 g cm⁻³; T_d, 295 °C; T_p, 397 °C.

(5) Characterization of the benzylated reagents:

1-phenylethyl acetate: colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.54$ (d, ³*J*_{*HH*} = 6.6 Hz, 3H, CHCH₃); 2.08 (s, 3H, COCH₃); 5.89 (q, ³*J*_{*HH*} = 13.2 Hz, 1H, CH); 7.29-7.32 (m, 5H, CH aromat); ¹³H NMR(75 MHz, CDCl₃): $\delta = 21.31$; 22.16; 72.28; 126.07; 127.83; 128.47; 141.69; 170.26; ESI-MS calcd for C₁₀H₁₂O₂ 164.20, found 350.4 (2M+Na)⁺.

Benzyl acetate: colorless oil. ¹H NMR(400 MHz, CDCl₃): $\delta = 2.11$ (s, 3H, COCH₃); 5.11 (s, 3H, CH₃); 7.33-7.37 (m, 5H, CH aromat); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 20.99$; 66.29; 128.23; 128.54; 135.90; 170.87; ESI-MS calcd for C₉H₁₂O₂ 150.17, found 149.0 (M-1)⁻.

(6) Characterization of the benzylated products:

1-methyl-4-(1-phenylethyl)benzene

¹H NMR (400 MHz, CDCl₃): δ = 1.61 (d, ³*J*_{HH} = 6.8 Hz, 3H, CHCH₃); 2.29 (s, 3H, ArCH₃); 4.10 (q, ³*J*_{HH} = 14.4 Hz, 1H, CH); 7.07-7.24 (m, 9H, CH aromat); ¹³C NMR(100.6 MHz, CDCl₃): δ = 20.95; 21.90; 44.34; 125.91; 127.46; 127.54; 128.31; 129.02; 135.45; 143.39; **88/\$29** 146.58; EI-MS: m/z (%): 196.07 (33) [M⁺]; 181.22 (100) [C₁₄H₁₃⁺].

1,2-dimethyl-4-(1-phenylethyl)benzene

¹H NMR (400 MHz, CDCl₃): $\delta = 1.61$ (d, ³*J*_{HH} = 7.2 Hz, 3H, CHCH₃); 2.21 (s, 6H, 2ArCH₃); 4.08 (q, ³*J*_{HH} = 14.4 Hz, 1H, CH); 6.94-7.29 (m, 8H, CH aromat); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 19.27$; 19.83; 21.93; 44.35; 124.84; 125.85; 127.51; 128.28; 128.95; 129.58; 134.10; 136.35; 143.85; 146.63; EI-MS: m/z (%): 210.08 (44) [M⁺]; 195.17 (100) [C₁₅H₁₅⁺].

1,4-dimethyl-2-(1-phenylethyl)benzene

¹H NMR (400 MHz, CDCl₃): $\delta = 1.59$ (d, ³*J*_{HH} = 7.2 Hz, 3H, CHCH₃); 2.17 (s, 3H, CH₃); 2.30 (s, 3H, CH₃); 4.27 (q, ³*J*_{HH} = 14.2 Hz, 1H, CH); 6.91-7.24 (m, 8H, CH aromat); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 19.26$; 21.23; 22.06; 40.88; 125.72; 126.70; 127.42; 127.64; 128.25; 130.26; 132.89; 135.27; 143.67; 146.30; EI-MS: m/z (%): 210.06 (48) [M⁺]; 195.20 (100) [C₁₅H₁₅⁺].

4-(1-phenylethyl)phenol

¹H NMR (400 MHz, CDCl₃): $\delta = 1.60$ (d, ³*J*_{HH} = 7.2 Hz, 3H, CHCH₃); 4.09 (q, ³*J*_{HH} = 14.6 Hz, 1H, CH); 6.74 (d, ³*J*_{HH} = 8.4 Hz, 2H); 7.08 (d, ³*J*_{HH} = 8.4 Hz, 2H); 7.151-7.292 (m, 5H, aromat); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 22.03$; 43.91; 115.11; 115.25; 120.79; 125.93; 127.51; 128.32; 128.71; 129.65; 138.74; 146.70; 153.64; ESI-MS: calcd for C₁₄H₁₄O 198.26, found 197.2 (M-H)⁻. EI-MS: m/z (%): 198.12 (35) [M⁺]; 183.18 (100) [C₁₃H₁₁O⁺].

2-(1-phenylethyl)furan

¹H NMR (400 MHz, CDCl₃): $\delta = 1.61(d, {}^{3}J_{HH} = 7.2 \text{ Hz}, 3\text{H}, \text{CHCH}_{3})$; 4.13 (q, ${}^{3}J_{HH} = 14.4 \text{ Hz},$ **S9** / **S29** 1H, CH); 6.06 (d, ${}^{3}J_{HH}$ = 3.2 Hz, 1H, CH); 6.30 (t, ${}^{3}J_{HH}$ = 2.4 Hz, 1H, CH); 7.21-7.33 (m, 6H); 13 C NMR(100.6 MHz, CDCl₃): δ = 20.48; 39.20; 104.88; 109.90; 126.48; 127.27; 128.45; 141.29; 144.12; 158.93; EI-MS: m/z (%): 172.05 (43) [M⁺]; 157.18 (100) [C₁₁H₉O⁺].

1-methoxy-4-(1-phenylethyl)benzene

¹H NMR (400 MHz, CDCl₃): $\delta = 1.62$ (d, ³*J*_{HH} = 7.2 Hz, 3H, CHCH₃); 3.78 (s, 3H, CH₃); 4.10 (q, ³*J*_{HH} = 14.4 Hz, 1H, CH); 6.82-6.84 (m, 2H, CH aromat); 7.13-7.30 (m, 7H, CH aromat); ¹³C NMR(100.6 MHz, CDCl₃): $\delta = 22.03$; 43.89; 55.20; 113.68; 125.90; 127.50; 128.31; 128.48; 138.52; 146.74; 157.78; EI-MS: m/z (%): 212.12 (36) [M⁺]; 197.20 (100) [C₁₄H₁₃O⁺].

((3,4-dimethylphenyl)methylene)dibenzene

¹H NMR (400 MHz, CDCl₃): δ = 2.11 (d, ³*J*_{HH}= 13.2 Hz, 6H, 2ArCH₃); 5.39 (s, 1H, CH); 6.74 (d, ³*J*_{HH}= 7.6 Hz, 1H, ArH); 6.82 (s, 1H, ArH); 6.94(d, ³*J*_{HH}= 7.6 Hz, 1H, ArH); 7.03 (d, ³*J*_{HH}= 7.2 Hz, 4H, ArH); 7.07-7.11 (m, 2H, ArH); 7.17 (t, ³*J*_{HH}= 7.4 Hz, 4H, ArH); ¹³C NMR(100.6 MHz, CDCl₃): δ = 19.31; 19.82; 56.48; 126.13; 126.78; 128.21; 129.39; 129.52; 130.71; 134.43; 136.36; 141.32; 144.17; EI-MS: m/z (%): 272.11 (55) [M⁺]; 257.19 (100) [C₂₀H₁₇⁺].

6-(1-phenylethyl)naphthalen-2-ol

¹H NMR (400 MHz, CDCl₃): δ = 1.77 (d, ³*J*_{HH}= 7.6 Hz, CHCH₃); 4.823 (s, 1H, OH); 5.16 (q, ³*J*_{HH}= 14.4 Hz, 1H, CH); 6.99 (d, ³*J*_{HH}= 8.8 Hz, 1H, ArH); 7.24 (d, ³*J*_{HH}= 4.8 Hz, 1H, ArH); 7.31-7.39 (m, 5H, ArH); 7.46 (t, ³*J*_{HH}= 7.6 Hz, 1H, ArH); 7.66 (d, ³*J*_{HH}= 8.8 Hz, 1H, ArH); 7.79 (d, ³*J*_{HH}= 8.4 Hz, 1H, ArH); 8.04 (d, ³*J*_{HH}= 8.8 Hz, 1H, ArH); ¹³C NMR(100.6 MHz, CDCl₃): δ = 17.05; 34.81; 119.38; 122.57; 123.09; 123.77; 126.58; 126.80; 127.14; 128.70; 128.85; 129.06; 129.66; 132.83; 143.59; 151.52; ESI-MS: calcd for C₁₈H₁₆O 248.32, found 247.2 (M-H)⁻, 494.6 (2M), 495.8 (2M-H)⁻.

2-(1-phenylethyl)thiophene 3-(1-phenylethyl)thiophene

These two isomers cannot be isolated by silica gel column chromatography. And the NMR date following are characterized to the mixture of the two isomers.

¹H NMR (400 MHz, CDCl₃): δ = 1.70 (d, ³*J*_{*HH*}= 7.2 Hz, CHCH₃); 4.34 (q, ³*J*_{*HH*}= 14.4 Hz, 1H, CH); 6.79 (d, ³*J*_{*HH*}= 3.6 Hz, 1H, ArH); 6.91 (q, ³*J*_{*HH*}= 6.4 Hz, 1H, ArH); 7.13 (d, ³*J*_{*HH*}= 4.4 Hz, 1H, ArH); 7.18-7.31 (m, 5H, ArH); ¹³C NMR(100.6 MHz, CDCl₃): δ = 23.32 (22.22); 40.71 (40.76); 119.82; 123.46; 123.57; 125.33; 126.15; 126.49; 127.24; 127.83 (127.40); 128.46 (128.40); 146.03; 150.69; EI-MS: m/z (%): 188.08 (49) [M⁺]; 173.20 (100) [C₁₁H₉S⁺].

(7) References

- 1 N. Jain, A. Kumar, S. M. S. Chauhan, Tetrahedron Lett., 2005, 46, 2599-2602.
- 2 K. Bica, P. Gaertner, Org. Lett., 2006, 8, 733-735.
- 3 (a) S. Hayashi, H. Hamaguchi, *Chem. Lett.* 2004, 33, 1590-1591. (b) M. S. Sitze, E. R. Schreiter, E. V. Patterson, R. G. Freeman, *Inorg. Chem.*, 2001, 40, 2298-2304.
- 4 D. A. Powell, G. Pelletier, *Tetrahedron Lett.*, 2008, **49**, 2495-2498.

(9) The ¹H and ¹³C NMR Charts of the benzylated reagents:

(10) The ¹H and ¹³C NMR Charts of the benzylated products

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

(11) The GC-MS charts of ethane-1,1-diyldibenzene and 4-benzyl-1,2-dimethylbenzene

GS-MS chart of ethane-1,1-diyldibenzene:

EI-MS: m/z (%): 182.02 (34) [M⁺]; 167.20 (100) [C₁₃H₁₁⁺].

It is difficult to isolate the benzylated product of benzene, the following is the GC-MS chart of

the product.

GS-MS chart of 4-benzyl-1,2-dimethylbenzene:

It is difficult to isolate the benzylated product of benzyl chloride and benzyl alcohol, the following is the GC-MS chart of the product.

EI-MS: m/z (%): 196.13 (76) [M⁺]; 181.28 (100) [C₁₄H₁₃⁺].

(12) Thermal gravimetric analysis of the iron-containing ionic liquids

Figure S4. Thermal gravimetric analysis scan of C₄mimFeCl₄ (1:1).

Figure S5. Thermal gravimetric analysis scan of C₄mimFeCl₄ (1:1.2).

Figure S6. Thermal gravimetric analysis scan of C₄mimFeCl₄ (1:2.0).

Figure S7. Thermal gravimetric analysis scan of C₄mimFeCl₃Br (1:1).