# Supplementary Material (ESI) for Green Chemistry # This journal is (c) The Royal Society of Chemistry 2011 data_global _journal_name_full 'Green Chemistry' _journal_coden_cambridge 1048 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address 'Pawe\/l Czarnecki' ; Department of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; 'Agnieszka Plutecka' ; Department of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; J.Gawronski ; Department of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; 'Karol Kacprzak' ; Department of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; _publ_contact_author_address ; Department of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; _publ_contact_author_email karol.kacprzak@gmail.com #TrackingRef '- syn_5.CIF' _publ_contact_author_name 'Karol Kacprzak' _publ_requested_category CO _publ_section_title ; Green and Practical Direct Asymmetric Aldol Reaction of Hydroxyacetone Catalyzed by 9-Amino Cinchona Alkaloid Tartrates. ; data_syn_5 _database_code_depnum_ccdc_archive 'CCDC 783759' _audit_creation_method SHELXL-97 _chemical_name_systematic ; syn-(3S,4R)-3,4-dihydroxy- 4-(4-nitrophenyl)butan-2-one ; _chemical_name_common syn-(3S,4R)-3,4-dihydroxy-4-(4-nitrophenyl)butan-2-one _chemical_melting_point ? _chemical_formula_moiety 'C10 H11 N O5' _chemical_formula_sum 'C10 H11 N O5' _chemical_formula_weight 225.20 _chemical_absolute_configuration ad loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21' _symmetry_space_group_name_Hall 'P 2ac 2ab' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' _cell_length_a 4.6835(4) _cell_length_b 9.2616(8) _cell_length_c 23.4038(16) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1015.19(15) _cell_formula_units_Z 4 _cell_measurement_temperature 130.0(1) _cell_measurement_reflns_used 6608 _cell_measurement_theta_min 3.78 _cell_measurement_theta_max 76.63 _exptl_crystal_description needle _exptl_crystal_colour colourless _exptl_crystal_size_max 0.60 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.473 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 472 _exptl_absorpt_coefficient_mu 1.024 _exptl_absorpt_correction_T_min 0.833 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _diffrn_ambient_temperature 130.0(1) _diffrn_radiation_wavelength 1.54184 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'SuperNova (Cu) X-ray Source' _diffrn_radiation_monochromator mirror _diffrn_measurement_device_type 'SuperNova, Single source at offset), Atlas' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean 5.2679 _diffrn_standards_number 7733 _diffrn_standards_interval_count 4 _diffrn_standards_interval_time 60 _diffrn_standards_decay_% ? _diffrn_reflns_number 7684 _diffrn_reflns_av_R_equivalents 0.0135 _diffrn_reflns_av_sigmaI/netI 0.0074 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -29 _diffrn_reflns_limit_l_max 29 _diffrn_reflns_theta_min 3.78 _diffrn_reflns_theta_max 76.63 _reflns_number_total 2060 _reflns_number_gt 2053 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.61' _computing_cell_refinement 'CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.61' _computing_data_reduction 'CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.61' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEP3 for Windows, 1997' _computing_publication_material 'PLATON, 1998' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0352P)^2^+0.2449P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.09(16) _refine_ls_number_reflns 2060 _refine_ls_number_parameters 178 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0257 _refine_ls_R_factor_gt 0.0256 _refine_ls_wR_factor_ref 0.0688 _refine_ls_wR_factor_gt 0.0687 _refine_ls_goodness_of_fit_ref 1.088 _refine_ls_restrained_S_all 1.088 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.6904(4) 0.51767(17) 0.40540(5) 0.0385(4) Uani 1 1 d . . . H1C H 0.6742 0.6210 0.4066 0.058 Uiso 1 1 calc R . . H1B H 0.5656 0.4801 0.3765 0.058 Uiso 1 1 calc R . . H1A H 0.8839 0.4914 0.3967 0.058 Uiso 1 1 calc R . . C2 C 0.6089(3) 0.45617(13) 0.46213(5) 0.0209(3) Uani 1 1 d . . . O2 O 0.41002(19) 0.37303(10) 0.46836(4) 0.0277(2) Uani 1 1 d . . . C3 C 0.7982(2) 0.49305(12) 0.51339(5) 0.0175(2) Uani 1 1 d . . . H3 H 0.930(3) 0.4128(16) 0.5164(6) 0.021(3) Uiso 1 1 d . . . O3 O 0.94423(18) 0.62558(9) 0.50392(3) 0.02027(18) Uani 1 1 d . . . H3O H 1.101(4) 0.6177(18) 0.5222(7) 0.029(4) Uiso 1 1 d . . . C4 C 0.6206(2) 0.50306(12) 0.56840(4) 0.0181(2) Uani 1 1 d . . . H4 H 0.503(3) 0.4136(16) 0.5693(6) 0.027(4) Uiso 1 1 d . . . O4 O 0.43440(17) 0.62493(9) 0.56524(3) 0.02069(18) Uani 1 1 d . . . H4O H 0.524(4) 0.6932(19) 0.5491(7) 0.038(5) Uiso 1 1 d . . . C5 C 0.8102(3) 0.50835(12) 0.62078(5) 0.0179(2) Uani 1 1 d . . . C6 C 0.8334(3) 0.63208(13) 0.65442(5) 0.0212(2) Uani 1 1 d . . . H6 H 0.728(3) 0.7167(16) 0.6456(6) 0.020(3) Uiso 1 1 d . . . C7 C 1.0149(3) 0.63413(13) 0.70124(5) 0.0228(2) Uani 1 1 d . . . H7 H 1.034(4) 0.7229(17) 0.7246(6) 0.033(4) Uiso 1 1 d . . . C8 C 1.1701(3) 0.51105(13) 0.71380(5) 0.0203(2) Uani 1 1 d . . . C9 C 1.1525(3) 0.38616(13) 0.68132(5) 0.0213(2) Uani 1 1 d . . . H9 H 1.263(3) 0.3010(17) 0.6914(6) 0.026(4) Uiso 1 1 d . . . C10 C 0.9688(3) 0.38597(13) 0.63493(5) 0.0208(2) Uani 1 1 d . . . H10 H 0.941(4) 0.3012(17) 0.6128(6) 0.027(4) Uiso 1 1 d . . . N1 N 1.3571(2) 0.51137(12) 0.76425(4) 0.0246(2) Uani 1 1 d . . . O5 O 1.5102(2) 0.40654(11) 0.77253(4) 0.0395(3) Uani 1 1 d . . . O6 O 1.3483(2) 0.61638(11) 0.79611(4) 0.0377(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0531(10) 0.0424(8) 0.0199(6) 0.0012(6) -0.0070(6) -0.0172(8) C2 0.0209(6) 0.0214(5) 0.0203(5) -0.0053(4) -0.0012(5) 0.0021(5) O2 0.0241(5) 0.0315(5) 0.0274(4) -0.0076(4) 0.0002(4) -0.0058(4) C3 0.0156(5) 0.0178(5) 0.0190(5) 0.0007(4) 0.0001(4) 0.0004(5) O3 0.0164(4) 0.0223(4) 0.0221(4) 0.0040(3) -0.0025(3) -0.0037(3) C4 0.0167(5) 0.0193(5) 0.0183(5) 0.0001(4) 0.0006(4) -0.0003(5) O4 0.0167(4) 0.0226(4) 0.0228(4) 0.0003(3) 0.0001(3) 0.0013(4) C5 0.0161(5) 0.0209(5) 0.0166(5) 0.0018(4) 0.0029(4) -0.0022(5) C6 0.0220(6) 0.0197(5) 0.0218(5) -0.0002(4) 0.0006(4) 0.0021(5) C7 0.0248(6) 0.0228(5) 0.0209(5) -0.0034(5) 0.0008(5) -0.0012(5) C8 0.0194(6) 0.0259(6) 0.0157(5) 0.0015(4) 0.0002(4) -0.0030(5) C9 0.0226(6) 0.0216(5) 0.0198(5) 0.0037(4) 0.0009(4) 0.0020(5) C10 0.0253(6) 0.0187(5) 0.0184(5) -0.0008(4) 0.0006(5) 0.0001(5) N1 0.0259(5) 0.0283(5) 0.0197(5) 0.0027(4) -0.0023(4) -0.0042(5) O5 0.0452(6) 0.0399(6) 0.0334(5) -0.0006(4) -0.0179(5) 0.0109(5) O6 0.0491(6) 0.0357(5) 0.0283(5) -0.0082(4) -0.0146(4) -0.0012(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.4944(17) . ? C1 H1C 0.9600 . ? C1 H1B 0.9600 . ? C1 H1A 0.9600 . ? C2 O2 1.2174(15) . ? C2 C3 1.5302(15) . ? C3 O3 1.4225(14) . ? C3 C4 1.5356(15) . ? C3 H3 0.968(16) . ? O3 H3O 0.854(18) . ? C4 O4 1.4283(14) . ? C4 C5 1.5144(15) . ? C4 H4 0.995(16) . ? O4 H4O 0.847(19) . ? C5 C6 1.3946(16) . ? C5 C10 1.3950(16) . ? C6 C7 1.3871(16) . ? C6 H6 0.948(15) . ? C7 C8 1.3833(16) . ? C7 H7 0.992(16) . ? C8 C9 1.3866(17) . ? C8 N1 1.4702(15) . ? C9 C10 1.3854(16) . ? C9 H9 0.973(16) . ? C10 H10 0.950(16) . ? N1 O5 1.2223(15) . ? N1 O6 1.2262(14) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 H1C 109.5 . . ? C2 C1 H1B 109.5 . . ? H1C C1 H1B 109.5 . . ? C2 C1 H1A 109.5 . . ? H1C C1 H1A 109.5 . . ? H1B C1 H1A 109.5 . . ? O2 C2 C1 122.88(11) . . ? O2 C2 C3 119.38(10) . . ? C1 C2 C3 117.62(11) . . ? O3 C3 C2 110.42(9) . . ? O3 C3 C4 109.81(9) . . ? C2 C3 C4 110.91(9) . . ? O3 C3 H3 111.5(9) . . ? C2 C3 H3 104.7(8) . . ? C4 C3 H3 109.3(8) . . ? C3 O3 H3O 105.2(11) . . ? O4 C4 C5 111.99(9) . . ? O4 C4 C3 109.57(9) . . ? C5 C4 C3 111.28(9) . . ? O4 C4 H4 108.8(9) . . ? C5 C4 H4 109.5(9) . . ? C3 C4 H4 105.5(9) . . ? C4 O4 H4O 108.1(13) . . ? C6 C5 C10 119.47(11) . . ? C6 C5 C4 121.96(10) . . ? C10 C5 C4 118.56(10) . . ? C7 C6 C5 120.34(11) . . ? C7 C6 H6 118.6(9) . . ? C5 C6 H6 121.1(9) . . ? C8 C7 C6 118.59(11) . . ? C8 C7 H7 121.2(10) . . ? C6 C7 H7 120.2(10) . . ? C7 C8 C9 122.67(11) . . ? C7 C8 N1 118.82(10) . . ? C9 C8 N1 118.50(10) . . ? C10 C9 C8 117.87(11) . . ? C10 C9 H9 121.3(9) . . ? C8 C9 H9 120.8(9) . . ? C9 C10 C5 121.05(11) . . ? C9 C10 H10 120.9(9) . . ? C5 C10 H10 118.0(10) . . ? O5 N1 O6 123.60(10) . . ? O5 N1 C8 118.38(10) . . ? O6 N1 C8 118.02(10) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O2 C2 C3 O3 -158.76(10) . . . . ? C1 C2 C3 O3 25.11(15) . . . . ? O2 C2 C3 C4 -36.79(14) . . . . ? C1 C2 C3 C4 147.08(11) . . . . ? O3 C3 C4 O4 54.87(12) . . . . ? C2 C3 C4 O4 -67.45(11) . . . . ? O3 C3 C4 C5 -69.52(11) . . . . ? C2 C3 C4 C5 168.15(9) . . . . ? O4 C4 C5 C6 -11.62(15) . . . . ? C3 C4 C5 C6 111.40(12) . . . . ? O4 C4 C5 C10 169.38(10) . . . . ? C3 C4 C5 C10 -67.59(13) . . . . ? C10 C5 C6 C7 0.66(18) . . . . ? C4 C5 C6 C7 -178.32(11) . . . . ? C5 C6 C7 C8 -0.31(17) . . . . ? C6 C7 C8 C9 0.35(18) . . . . ? C6 C7 C8 N1 -178.44(11) . . . . ? C7 C8 C9 C10 -0.72(18) . . . . ? N1 C8 C9 C10 178.07(10) . . . . ? C8 C9 C10 C5 1.07(17) . . . . ? C6 C5 C10 C9 -1.06(18) . . . . ? C4 C5 C10 C9 177.96(11) . . . . ? C7 C8 N1 O5 -174.35(11) . . . . ? C9 C8 N1 O5 6.81(17) . . . . ? C7 C8 N1 O6 6.51(17) . . . . ? C9 C8 N1 O6 -172.32(12) . . . . ? _diffrn_measured_fraction_theta_max 0.987 _diffrn_reflns_theta_full 76.63 _diffrn_measured_fraction_theta_full 0.987 _refine_diff_density_max 0.215 _refine_diff_density_min -0.133 _refine_diff_density_rms 0.033