Supporting Information

Separation of ethanol-water mixtures by liquidliquid extraction using phosphonium-based ionic liquids

Catarina M. S. S. Neves^a, José F. O. Granjo^b, Mara G. Freire^a, Al Robertson^c, Nuno M.C. Oliveira^b and João A. P. Coutinho^a*

^aCICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro,

Portugal

^bCIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, 3030-790

Coimbra, Portugal

°Cytec Canada Inc., 9061 Garner Road, Niagara Falls, Ontario, Canada L2E 6S5

*Corresponding author

Tel: +351-234-370200; Fax: +351-234-370084; E-mail address: jcoutinho@ua.pt

Experimental data of the systems IL + water + EtOH

Dhaca		Mass Fraction		Selectivity
Fliase	w_{IL}	WEtOH	W _{H2O}	(S)
	0.840	0.000	0.160	
Тор	0.356	0.449	0.195	1 74
Bottom	0.053	0.539	0.408	1./4
Тор	0.524	0.335	0.141	2.12
Bottom	0.001	0.432	0.567	5.15
Тор	0.620	0.255	0.125	4 20
Bottom	0.001	0.317	0.682	4.39
Тор	0.718	0.161	0.121	5 69
Bottom	0.000	0.190	0.810	5.08
Critical Point	0.18	0.54	0.28	

Table S1 Experimental data and critical point calculated by the Sherwood method¹ for the ternary system [TDTHP][Phosph] + H_2O + EtOH.

Dhasa -		Mass Fraction		Selectivity
1 Hase	w_{IL}	$W_{\rm EtOH}$	W _{H2O}	(S)
	0.851	0.000	0.149	
Тор	0.392	0.419	0.189	2.00
Bottom	0.032	0.509	0.459	2.00
Тор	0.513	0.341	0.146	2.00
Bottom	0.003	0.429	0.568	5.09
Тор	0.615	0.256	0.129	4.24
Bottom	0.000	0.315	0.685	4.34
Тор	0.716	0.162	0.122	5 21
Bottom	0.000	0.201	0.799	5.31
Critical Point	0.21	0.55	0.24	

Table S2 Experimental data and critical point calculated by the Sherwood method¹ for the ternary system [TDTHP][Deca] + H_2O + EtOH.

Table	S3	Experimental	data	and	critical	point	calculated	by	the	Sherwood	method ¹	for	the
ternary	/ sys	stem [TDTHP]	Cl + l	H_2O	+ EtOH								

Dhasa -		Mass Fraction		Selectivity
r nase	w_{IL}	WEtOH	W _{H2O}	<i>(S)</i>
	0.866	0.000	0.134	
Тор	0.438	0.395	0.167	2.24
Bottom	0.079	0.472	0.449	2.24
Тор	0.620	0.271	0.109	5.29
Bottom	0.000	0.319	0.681	5.28
Тор	0.807	0.082	0.111	6.61
Bottom	0.000	0.100	0.900	0.01
Тор	0.723	0.175	0.102	< 0 7
Bottom	0.000	0.198	0.802	6.97
Critical Point	0.25	0.49	0.26	

Dhasa -		Mass Fraction		Selectivity		
rnase	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WEtOH	W _{H2O}	<i>(S)</i>		
	0.872	0.000	0.128			
Тор	0.590	0.257	0.153	2 20		
Bottom	0.031	0.306	0.663	2.29		
Тор	0.703	0.176	0.121	264		
Bottom	0.006	0.218	0.776	3.64		
Тор	0.510	0.305	0.185	5 10		
Bottom	0.088	0.381	0.531	5.18		
Тор	0.795	0.085	0.120			
Bottom	0.004	0.096	0.900	6.67		
Critical Point	0.40	0.37	0.23			

Table S4 Experimental data and critical point calculated by the Sherwood method¹ for the ternary system [TDTHP][CH₃SO₃] + H_2O + EtOH.

Dhase -		Mass Fraction		Selectivity		
rnase	w_{IL}	WEtOH	W _{H2O}	<i>(S)</i>		
	0.932	0.000	0.068			
Тор	0.128	0.572	0.300	0.566		
Bottom	0.448	0.426	0.126	0.566		
Тор	0.054	0.555	0.391	2.74		
Bottom	0.562	0.348	0.090	2.74		
Тор	0.645	0.280	0.075	4.50		
Bottom	0.010	0.436	0.554	4./3		
Тор	0.718	0.223	0.059			
Bottom	0.001	0.326	0.673	7.76		
Critical Point	0.28	0.53	0.19			

Table S5 Experimental data and critical point calculated by the Sherwood method¹ for the ternary system [TDTHP]Br + H_2O + EtOH.

Table S6 Experimental data and critical point calculated by the Sherwood method	for the
ternary system $[TDTHP][N(CN)_2] + H_2O + EtOH.$	

Dhase -		Mass Fraction		Selectivity
r llase	w_{IL}	WEtOH	W _{H2O}	(S)
	0.967	0.000	0.033	
Тор	0.434	0.458	0.108	1.00
Bottom	0.114	0.634	0.252	1.69
Тор	0.622	0.313	0.065	2.41
Bottom	0.020	0.574	0.406	3.41
Тор	0.712	0.238	0.050	5 40
Bottom	0.009	0.463	0.528	5.48
Тор	0.787	0.169	0.044	7.74
Bottom	0.008	0.330	0.662	/./0
Critical Point	0.28	0.16	0.56	

Dhaga		Mass Fraction		Selectivity
Phase –	WIL	WEtOH	W _{H2O}	<i>(S)</i>
	0.998	0.000	0.002	
	0.384	0.553	0.063	
	0.318	0.612	0.070	
	0.272	0.652	0.076	
	0.235	0.686	0.079	
	0.210	0.707	0.083	
	0.189	0.727	0.084	
	0.174	0.738	0.088	
	0.160	0.752	0.088	
	0.153	0.754	0.093	
	0.141	0.766	0.093	
	0.135	0.767	0.098	
	0.041	0.765	0.193	
	0.176	0.741	0.083	
	0.222	0.702	0.076	
	0.244	0.684	0.072	
	0.263	0.668	0.069	
	0.281	0.652	0.067	
	0.297	0.638	0.065	
	0.470	0.048	0.482	
Тор	0.090	0.788	0.122	2 57
Bottom	0.848	0.144	0.008	2.31
Тор	0.012	0.737	0.251	116
Bottom	0.937	0.058	0.005	4.10
Тор	0.001	0.605	0.394	6 1 2
Bottom	0.955	0.041	0.004	0.12
Тор	0.000	0.485	0.515	11 31
Bottom	0.964	0.033	0.003	11.31
Тор	0.000	0.226	0.774	21 66
Bottom	0.983	0.015	0.002	21.00
Critical Point	0.73	0.26	0.01	

Table S7 Experimental data and critical point calculated by the Sherwood method¹ for the ternary system $[TDTHP][NTf_2] + H_2O + EtOH$.

Absolute Deviation Experimental data NRTL correlated data IL Phase $(|w_{exp}-w_{NRTL}|)$ w_{IL} WEtOH WH2O w_{IL} WEtOH WH2O w_{IL} WEtOH W_{H2O} 0.000 0.160 0.842 0.000 0.158 0.002 0.000 0.002 0.840 0.356 0.449 0.195 0.363 0.437 0.200 0.007 0.012 0.005 Top Bottom 0.053 0.539 0.408 0.059 0.542 0.399 0.006 0.003 0.009 Top 0.524 0.335 0.141 0.519 0.330 0.151 0.005 0.005 0.010 0.432 0.427 [TDTHP][Phosph] Bottom 0.001 0.567 0.007 0.567 0.006 0.005 0.000 0.621 0.255 0.125 0.614 0.259 0.007 0.004 0.003 Top 0.128 0.001 0.317 0.682 0.001 0.313 0.004 Bottom 0.686 0.000 0.005 0.718 0.161 0.718 0.173 Top 0.121 0.109 0.000 0.012 0.012 0.000 0.190 0.810 0.000 0.186 0.814 0.000 0.004 0.004 Bottom

Table S8 Absolute deviations between experimental data and NRTL correlated data of the ternary system [TDTHP][Phosph] + H_2O + EtOH.

		Experimental data			NDTL	NRTL correlated data			Absolute Deviation		
IL	Phase	Experii	nemai uai	a	INKILU	oneialeu	uata	$(w_{exp}-w_{NRTL})$			
		w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	$W_{\rm H2O}$	WIL	WEtOH	$W_{\rm H2O}$	
		0.851	0.000	0.149	0.855	0.000	0.146	0.003	0.000	0.003	
	Тор	0.512	0.341	0.146	0.508	0.335	0.157	0.005	0.006	0.011	
	Bottom	0.004	0.429	0.568	0.009	0.424	0.567	0.005	0.005	0.001	
	Тор	0.615	0.256	0.129	0.610	0.259	0.131	0.005	0.003	0.002	
[TDTHP][Deca]	Bottom	0.000	0.315	0.685	0.001	0.311	0.688	0.001	0.004	0.003	
	Тор	0.716	0.163	0.122	0.710	0.177	0.113	0.005	0.014	0.009	
	Bottom	0.000	0.201	0.799	0.000	0.194	0.806	0.000	0.007	0.007	
	Тор	0.392	0.419	0.189	0.400	0.409	0.191	0.008	0.010	0.003	
	Bottom	0.031	0.509	0.459	0.040	0.510	0.450	0.009	0.001	0.009	

Table S9 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP][Deca] + H_2O + EtOH.$

		Exporin	Experimental data			ormalatad	data	Absolu	Absolute Deviation		
IL	Phase	Experii	lielitai uat	.a	INKILC				$(w_{exp}-w_{NRTL})$		
		w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	$W_{\rm H2O}$	
		0.866	0.000	0.134	0.861	0.001	0.138	0.005	0.001	0.004	
	Тор	0.438	0.395	0.168	0.429	0.387	0.184	0.008	0.008	0.017	
	Bottom	0.079	0.472	0.449	0.058	0.488	0.455	0.021	0.016	0.006	
	Тор	0.620	0.271	0.109	0.623	0.254	0.123	0.003	0.017	0.014	
[TDTHP]Cl	Bottom	0.000	0.319	0.681	0.005	0.322	0.674	0.005	0.003	0.007	
	Тор	0.723	0.175	0.102	0.729	0.170	0.101	0.006	0.005	0.001	
	Bottom	0.000	0.198	0.802	0.000	0.202	0.798	0.000	0.004	0.004	
	Тор	0.807	0.082	0.111	0.815	0.091	0.094	0.007	0.009	0.017	
	Bottom	0.000	0.100	0.900	0.000	0.099	0.901	0.000	0.002	0.001	

Table S10 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP]Cl + H_2O + EtOH$.

IL	Phase	Experimental data			NRTL correlated data			Absolute Deviation $(w_{exp}-w_{NRTL})$		
		w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	W _{H2O}
		0.872	0.000	0.128	0.881	0.000	0.119	0.009	0.000	0.009
	Тор	0.590	0.257	0.153	0.597	0.245	0.158	0.007	0.013	0.005
	Bottom	0.031	0.306	0.663	0.034	0.311	0.655	0.002	0.005	0.008
	Тор	0.703	0.176	0.121	0.695	0.171	0.135	0.008	0.005	0.013
[TDTHP][CH ₃ SO ₃]	Bottom	0.006	0.218	0.776	0.019	0.208	0.774	0.012	0.010	0.002
	Тор	0.510	0.305	0.185	0.504	0.308	0.188	0.006	0.003	0.003
	Bottom	0.088	0.381	0.531	0.067	0.395	0.538	0.021	0.014	0.007
	Тор	0.795	0.085	0.120	0.798	0.083	0.119	0.002	0.002	0.001
	Bottom	0.003	0.092	0.905	0.013	0.093	0.894	0.009	0.001	0.010

Table S11 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP][CH_3SO_3] + H_2O + EtOH.$

IL	Phase	Eunorir	Experimental data			NRTL correlated data			Absolute Deviation		
		Experii							$(w_{exp}-w_{NRTL})$		
		WIL	WEtOH	$W_{\rm H2O}$	w_{IL}	WEtOH	W _{H2O}	WIL	WEtOH	$W_{\rm H2O}$	
[TDTHP]Br		0.937	0.000	0.063	0.934	0.000	0.066	0.003	0.000	0.003	
	Тор	0.054	0.555	0.391	0.047	0.555	0.398	0.007	0.000	0.007	
	Bottom	0.562	0.348	0.090	0.551	0.346	0.103	0.012	0.002	0.013	
	Тор	0.645	0.280	0.075	0.649	0.273	0.078	0.004	0.007	0.003	
	Bottom	0.010	0.436	0.554	0.007	0.440	0.553	0.003	0.004	0.001	
	Тор	0.128	0.572	0.300	0.129	0.579	0.292	0.000	0.007	0.008	
	Bottom	0.449	0.426	0.126	0.451	0.418	0.132	0.002	0.008	0.006	
	Тор	0.718	0.223	0.059	0.718	0.220	0.062	0.000	0.003	0.003	
	Bottom	0.001	0.326	0.673	0.001	0.326	0.673	0.000	0.001	0.000	

Table S12 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP]Br + H_2O + EtOH$.

IL	Phase	Experimental data			NRTL correlated data			Absolute Deviation		
								$(W_{exp}-W_{NRTL})$		
		w_{IL}	W_{EtOH}	$W_{\rm H2O}$	w_{IL}	w_{EtOH}	W _{H2O}	w_{IL}	WEtOH	$W_{\rm H2O}$
		0.967	0.000	0.033	0.978	0.009	0.013	0.011	0.009	0.021
	Top	0.622	0.313	0.065	0.623	0.311	0.067	0.001	0.003	0.002
	Bottom	0.020	0.574	0.406	0.021	0.574	0.405	0.001	0.000	0.001
	Тор	0.712	0.238	0.050	0.689	0.256	0.054	0.023	0.018	0.005
[TDTHP][N(CN) ₂]	Bottom	0.009	0.463	0.528	0.003	0.457	0.539	0.006	0.006	0.011
	Тор	0.434	0.458	0.108	0.462	0.437	0.102	0.028	0.021	0.006
	Bottom	0.115	0.634	0.252	0.144	0.626	0.230	0.029	0.008	0.022
	Тор	0.787	0.169	0.044	0.753	0.204	0.043	0.034	0.035	0.001
	Bottom	0.009	0.330	0.662	0.000	0.318	0.681	0.008	0.011	0.020

Table S13 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP][N(CN)_2] + H_2O + EtOH.$

IL	Phase	Experimental data			NRTL correlated data			Absolute Deviation		
								$(w_{exp}-w_{NRTL})$		
		w_{IL}	WEtOH	$W_{ m H2O}$	w_{IL}	WEtOH	W _{H2O}	w_{IL}	WEtOH	W _{H2O}
[TDTHP][NTf ₂]		0.998	0.000	0.002	0.999	0.000	0.001	0.001	0.000	0.001
	Тор	0.012	0.737	0.252	0.049	0.697	0.254	0.037	0.039	0.002
	Bottom	0.937	0.058	0.005	0.903	0.090	0.007	0.034	0.032	0.002
	Тор	0.090	0.789	0.122	0.152	0.735	0.114	0.062	0.054	0.008
	Bottom	0.848	0.144	0.009	0.864	0.128	0.008	0.017	0.016	0.001
	Тор	0.000	0.485	0.515	0.005	0.480	0.515	0.005	0.005	0.000
	Bottom	0.964	0.033	0.003	0.930	0.065	0.005	0.035	0.032	0.002
	Тор	0.001	0.605	0.394	0.015	0.593	0.392	0.014	0.012	0.002
	Bottom	0.955	0.041	0.004	0.920	0.074	0.006	0.035	0.033	0.002
	Тор	0.000	0.226	0.774	0.000	0.222	0.778	0.000	0.004	0.004
	Bottom	0.983	0.015	0.002	0.954	0.043	0.003	0.029	0.028	0.001

Table S14 Absolute deviations between experimental data and NRTL correlated data of the ternary system $[TDTHP][NTf_2] + H_2O + EtOH.$

Comparison between all experimental ternary phase diagrams

Fig. S1 Experimental ternary phase diagrams for all IL + EtOH + H_2O systems at 298.15 K

(mass fraction units).

Consistency of the experimental tie-lines

EtOH + Water.

S and D dependence on the ethanol content

liquid rich-phase ($w_{\text{EtOH}}^{\text{IL}}$).

Fig. S4 Correlation of ethanol distribution coefficients (*D*) as a function of the ethanol content in

the ionic liquid rich-phase ($w_{\text{EtOH}}^{\text{IL}}$).

NRTL parameter estimation

The expressions for the excess Gibbs energy (g^E) and the logarithm of the activity coefficient $(\ln \gamma_i)$ given by the NRTL model can be written as³:

$$\frac{g^E}{RT} = \sum_{i}^{n_c} x_i \ln \gamma_i = \sum_{i}^{n_c} \frac{x_i L_i}{M_i}$$
(S1)

$$\ln \gamma_{i} = \frac{L_{i}}{M_{i}} + \sum_{j}^{n_{c}} \frac{x_{j} G_{ij}}{M_{j}} (\tau_{ij} - \frac{L_{j}}{M_{j}})$$
(S2)

$$L_i = \sum_{k}^{n_c} x_k \tau_{ki} G_{ki}$$
(S3)

$$M_i = \sum_{k}^{n_c} x_k G_{ki}$$
(S4)

$$G_{ij} = e^{-\alpha_{ij}\tau_{ij}} \tag{S5}$$

$$\tau_{ij} = \frac{(g_{ij} - g_{ii})}{RT} = \frac{\Delta g_{ij}}{RT}, \ i \neq j \text{ and } \tau_{ij} = 0, \ i = j$$
(S6)

Here $i, j, k \in \{1, 2, 3\}$ represent the different molecular species in the mixture $(1 - \text{water}, 2 - \text{ethanol}, 3 - \text{IL}), n_c$ is the number of components, and x_i refers to molar fractions. In the present work, the parameter estimation task was formulated as the solution of a nonlinear programming problem (NLP), using the weighted norm of the differences between the experimental mass fractions and the values predicted by the model as an objective function⁴:

$$\min_{z} \phi = \sum_{i}^{n_{t}} \sum_{j}^{n_{c}} \sum_{k}^{2} \omega_{ijk} e_{ijk}(\tau)^{2}$$

where $e_{ijk}(\tau) = w_{ijk}^{exp} - w_{ijk}^{mod}(\tau)$, and the superscripts *exp* and *mod* correspond to experimental and predicted mass fraction values, respectively. The summations in this equation are taken over all tie-lines (*i*), components (*j*) and phases (*k*), and ω_{ijk} is a weight factor associated with each error term. Using the isothermal data available for each system, the objective function ϕ was minimized by simultaneous determination of all model variables (here denoted as *z*), subject to constraints of iso-activity, the NRTL activity model described by equations (S2-S6), sum of mass and molar fraction restrictions, and magnitude bounds for the model parameters τ_{ij} . Mass fractions were used in the data regression, due to the large differences in molecular weights between the ILs and the molecular components.

To address the non-convexity of this nonlinear parameter estimation problem, which often leads to multiple local optimal solutions, this problem was implemented in GAMS⁵, taking advantage of the robustness of the numerical solvers available in this system. Additionally, considerable care was placed in the reformulation of the original model equations, as NLP constraints. This was done by introducing new terms and using algebraic rearrangements in the resultant equations that allowed the nonlinearity of each individual component of the model to be significantly decreased. Scaling of the resulting variables and equations was performed, also with the purpose of reducing the overall model nonlinearity. A subset of fundamental model variables was identified, and proper initialization and bounds were established for them. These values were then propagated throughout the model to initialize and bound the remaining variables, allowing both a more consistent global model initialization, and avoiding the nonconvergence of the NLP due to the inability of locating feasible solutions. This step was verified to be an

essential task to guarantee the convergence of the parameter estimation. The following numerical solvers were used in this study:

- CONOPT⁶ based on the General Reduced Gradient and Successive Quadratic Programming algorithms; provides a very robust initialization and location of feasible points in highly constrained problems; suitable for medium to large scale NLPs;
- OQNLP⁷ a global solver based on various heuristic multistart algorithms;
 designated to rapidly finding various local optima of smooth constrained NLPs;
- BARON⁸ a global numerical solver for continuous and discrete variables; based on a deterministic global optimization algorithm; capable of determining and refining model bounds in different regions of the solution domain.

Each of these solvers was tested with each LLE ternary system, to ensure that the set of parameters obtained corresponds to the best possible solutions using this type of formulation. The values of the residual function ϕ at the optimum were comprised between 0.7×10^{-3} (system with Br⁻) and 7×10^{-3} (for the system with [N(CN)₂]⁻). This was possible through the extensive search for alternative solutions (especially with the OQNLP solver) and by increasing the bounds allowed for the τ_{ij} parameters, which in various cases resulted in higher values for the interaction parameter τ_{13} (water – IL). This step should be interpreted with caution, since it corresponds to larger values of the respective Δg_{ij} interaction term, and would perhaps benefit from additional confirmation provided by including in the regression experimental data obtained at different temperatures.

Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry 2011

The computer requirements for the parameter estimation task were of the order of one second of CPU, using GAMS/CONOPT on a current Intel Xeon Linux workstation. Due to different nature of the algorithms, a maximum of 30 minutes of CPU were allowed for the runs with the OQNLP solver, and 60 minutes for BARON. Within the time allowed and for all the systems considered, BARON was unable to find a guaranteed global solution, stopping often at a local solution. On the other hand, the OQNLP solver was able to identify several distinct local solutions of the problems. This number of local optima found varied from 5 (for the system with $[NTf_2]$) to 77 (system with Br), and corresponded typically to approximately 20 different local optima, in most of the cases considered. Within this set, the solutions provided by CONOPT corresponded typically to the best (or second best) local solutions known for each problem, after reasonable tuning of the initialization scheme. From an overall perspective, the experience acquired in this part of the work indicates that the critical steps in this parameter estimation task were the proper construction of the NLP (through reformulation, scaling, initialization and bounding of the original mathematical model), and the availability of a multistart optimizer, capable of largely eliminating the effects of the initial estimates on the quality of the solutions obtained.

References

- J. D. Seader and E. J. Henley, in *Separation Process Principles*, John Wiley & Sons, New York edn., 1998.
- 2. D. Othmer and P. Tobias, *Ind. Eng. Chem.*, 1942, **34**, 693-696.
- J. P. O'Connell and J. M. Haile, in *Thermodynamics: Fundamentals for Applications*, Cambridge University Press, New York edn., 2005.
- 4. J. M. Sørensen, T. Magnussen, P. Rasmussen and A. Fredenslund, *Fluid Phase Equilib.*, 1979, **3**, 47-82.
- A. Brooke, D. Ketndrick, A. Meeraus and R. Raman, in *GAMS A User's Guide*, GAMS Development Corporation, Washington DC edn., 2005.
- 6. A. S. Drud, ORSA J. Comput., 1992, 6, 207-216.
- 7. <u>http://www.gams.com/dd/docs/solvers/oqnlp.pdf</u>, Accessed December 3rd, 2010.
- M. Tawarmalani and N. V. Sahinidis, in *Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming*, Kluwer Academic Publishers, Dordrecht edn., 2002.