Supporting Information

Catalytic Production of Hydrogen through Aqueous-Phase Reforming over Platinum/Ordered Mesoporous Carbon Catalysts

Tae-Wan Kim,^{*a} Ho-Dong Kim,^{a,b} Kwang-Eun Jeong,^a Ho-Jeong Chae,^a Soon-Yong Jeong,^a Chang-Ha Lee,^b Chul-Ung Kim^{*a}

 ^a Petroleum Displacement Research Center, Green Chemistry Research Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Sinseongno 19, Yuseong, Daejeon 305-600, Republic of Korea.
 ^b Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea.

^{*} Correspondence should be addressed to Dr. T.-W. Kim (E-mail: <u>twkim@krict.re.kr</u>) and Dr. C.-U. Kim (E-mail: <u>cukim@krict.re.kr</u>)

Figure S1. Rates of gas productions over 7% Pt/CMK-3 with time on stream at 250°C, 45 atm and WHSV of 2.0 h^{-1} for APR of 10 wt% aqueous EG.

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2011

 Table S1. EDX quantification of CMK-3

Element	Atomic %
С	91.7
0	8.1
Si	< 0.1
F	< 0.1