Supporting Information

Ionic liquids and fragrances - Direct isolation of orange essential oil

Katharina Bica, a,* Peter Gaertner, a and Robin D. Rogers b,*

^aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, Austria.

Fax: +43 1 58801 16399; Tel: +43 1 58801 163601;

E-mail: kbica@ioc.tuwien.ac.at

^b Department of Chemistry and Center for Green Manufacturing, The University of Alabama, Tuscaloosa, AL 35487, USA.

Fax: +1 205 348 0823; Tel: +1 205 348 4323;

Email: rdrogers@as.ua.edu

1. General

All chemicals unless otherwise stated were purchased from commercial suppliers and used without further purification. *N*-Methylimidazole was distilled from KOH prior to use. Ionic liquids **1** and **2** were prepared according to literature procedures, and analytical data were in accordance with literature. 1,2 [C₂mim]OAc **3** was purchased from Iolitec (Heilbronn, Germany) in >95% purity. All ionic liquids were dried for 24 h at 80 °C and 0.01 mbar with stirring before use and were stored under argon.

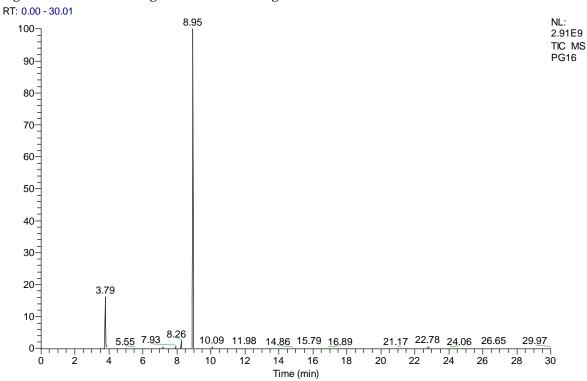
¹H and ¹³C NMR spectra were recorded on a Bruker AC 200 at 200 and 50 MHz, resp., using the solvent peak as reference.

GC-MS analyses were conducted on a VOYAGER Quadrupol (Thermo Finnigan) directly interfaced to a GC 8000 TOP gas chromatograph using a BGB-5 (30 m \times 0.32 mm i.d., 1.0 μ m film thickness) cross-bonded dimethyl polysiloxane capillary column. The oven temperature program was 40 °C (3 min)//10 °C/min//280 °C (3 min). Source and transfer line temperatures were set at 200 and 280 °C, resp.

2. Experimental Procedure

¹ J. Dupont, C. S. Consorti, P. A. Z. Suarez and R. F. de Souza, *Org. Synth.* 2003, **79**, 236.

² H. Zhang, J. Wu, J. Zhang and J. He, Macromolecules 2005, 38, 8272.


Dissolution: A 100 mL round-bottom flask is charged with 35 g of $[C_4mim]OAc$ 3 and dried under high vacuum (0.1 mbar, 50 °C) with stirring for 30 min. 15 g orange peel in pieces (finely grated on a conventional kitchen rasp) were added, and the flask sealed with a stopper and secured with a clamp. The mixture was stirred for 1 h at 60 °C (oil bath temperature) with efficent stirring until the biomass was mostly dissolved.

Isolation of Essential Oil: The crude mass was subjected to a Kugelrohr oven and a mixture of water and limonene was distilled at $\sim 60\text{-}65$ °C and 12/15 mbar (efficient cooling with ice/NaCl was required). The distillate was separated between water and dichloromethane, the organic layer dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure.

Recovery of Ionic Liquid: The remaining residue after dissolution was diluted with 200 mL of H_2O to precipitate the biopolymers. The suspension was filtered over silica, and the filtrate evaporated. The remaining volatiles were removed under reduced pressure (0.1 mbar, stirring, 80 °C) to give $[C_4mim]OAc$ 3 as a dark brown liquid in quantitative yield. The obtained ionic liquid was pure according to 1H NMR spectroscopy.

For further purification, the ionic liquid was re-dissolved in 100 mL of H_2O and refluxed with an excess of charcoal for 2 h. The suspension was filtered over silica, and the filtrate evaporated. The remaining volatiles were removed under reduced pressure (0.1 mbar, stirring, 80 °C) to give [C₄mim]OAc **3** as a colourless liquid in 90% yield.

Fig. S1. GC-MS chromatogram of isolated orange oil

PG16 #342 RT: 8.95 AV: 1 NL: 4.63E8

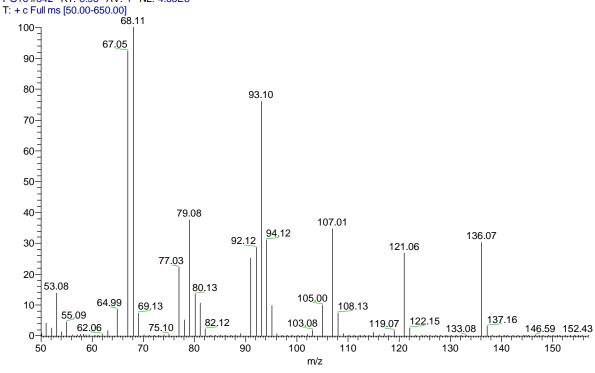
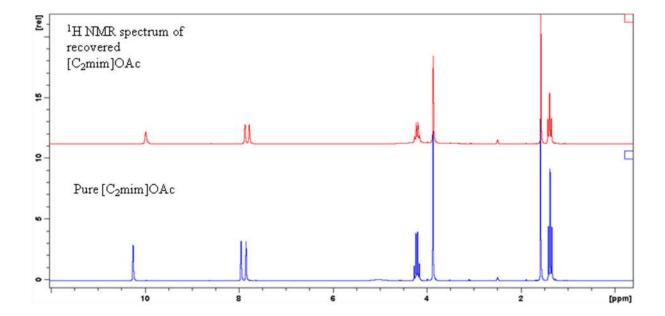



Fig. S2. NMR spectra of pure and recovered ionic liquid [C_2 mim]OAc 3

