Supporting Information

An easy access to thiazolines and thiazines *via* tandem *S*-alkylation-cyclodeamination of thioamides/haloamines

Uma Pathak,* Shubhankar Bhattacharyya, Vishwanath Dhruwansh, Lokesh Kumar Pandey, Rekha Tank and M. V. S. Suryanarayana

Synthetic Chemistry Division, Defence R & D Establishment, Jhansi Road, Gwalior-474002 (M. P.) India.

Contents

1.	General details	P2
2.	Experimental procedure	Р3
3.	Spectroscopic characterization data	P4-P5
4.	Selected copies of ¹ H, ¹³ C NMR and Mass spectra	P6-P11

1. General details

Reagents were obtained from commercial supplier, and used without further purification. Thioamide for Entry No. 4–12, 14 were prepared by thionation of corresponding amide by reported method.¹ Melting point were measured by scientific-MP-DS melting point apparatus. Column chromatographic purification of products was performed on silica gel (60-120 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE II 400 MHz. Chemical shifts were expressed in parts per millions (δ) downfield from the internal standard tetramethylsilane and were reported as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Mass spectra was obtained in Agilent 5975C GC-MS and Elemental analysis was performed on Elementar vario MICRO cube CHNS analyser.

1- U. Pathak, L. K. Pandey and R. Tank, J. Org. Chem., 2008, 73, 2890.

2. Experimental procedure

(1) General experimental procedure- 250 µl of water was added to 2/3-

haloalkylamine salt (5.5 mmol) and mixed thoroughly. To this thioamide (5 mmol) was added and the reaction mixture was heated at 60-70 °C till the reaction is complete. Contents were cooled and neutralized with cold 5% sodium carbonate solution. Yellow oil gets separated which was extracted with ethyl acetate. Solvent removal under vacuum yielded the pure thazoline/thiazine. If required the compound can be further purified by column chromatography.

(2) Procedure for the preparation of 2-substituted thiazolines and thiazines

from electronically deficient thioamides. Water (10-20µl per mmol) was added to an equimolar mixture of thioamide and and 2/3-haloalkylamine salt, and mixed thoroughly. Contents were then heated on an oil bath at 90-100°C with constant stirring till the reaction is complete. On completion of the reaction product isolation and purification is done similar to the general experimental procedure.

3. Spectroscopic characterization data

2-Phenyl-5, 6-dihydro-4H-[1, 3]-thiazine (2): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.75 (m, 2H), 7.42-7.34 (m, 3H), 3.91 (t, 2H, J_1 =5.6 Hz, J_2 =5.2 Hz), 3.15 (t, 3H, J=6.0 Hz), 1.93-1.89 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 158.00, 139.48, 130.19, 128.19, 126.17, 47.93, 26.45, 19.05; EIMS: m/z 177 [M⁺], 130, 121 104, 74; Anal. Calcd for C₁₀H₁₁NS. C, 67.75; H, 6.25; N, 7.90; S, 18.09. Found C, 67.87; H, 6.31; N, 7.94; S, 17.86.

2-(4-Tolyl)-4, 5-dihydro-[1, 3]-thiazole (4): Yellow solid (m.p. 41-42°C); ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, 2H, *J*=8.0 Hz), 7.17 (d, 2H, *J*=8.0 Hz), 4.41 (t, 2H, *J*=8.4 Hz), 3.36 (t, 2H, *J*=8.4 Hz), 2.35 (s, 3H); ¹³C NMR (100.6 MHz, CDCl₃) δ 168.81, 141.66, 130.43, 129.23, 128.37, 64.95, 33.56, 21.53; EIMS: m/z 177 [M⁺], 118, 60; Anal. Calcd for C₁₀H₁₁NS. C, 67.75; H, 6.25; N, 7.90; S, 18.09. Found C, 67.86; H, 6.37; N, 7.72; S, 18.03.

2-(4-Methoxy-phenyl)-4, 5-dihydro- [1, 3]-thiazole (5): Pale yellow solid (m.p.: 43-44 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (dd, 2H, J_1 =6.8 Hz, J_2 =2.0 Hz), 6.91 (dd, 2H, J_1 =6.8 Hz, J_2 =2.0 Hz), 4.42 (t, 2H, J=8.4), 3.84 (s, 3H), 3.39 (t, 2H, J_1 =8.0, J_2 =8.4); ¹³C NMR (100.6 MHz, CDCl₃) δ 167.99, 161.94, 130.05, 125.77, 113.74, 64.78, 55.30, 33.55; EIMS: m/z 193 [M⁺], 147, 133, 103, 60; Anal. Calcd for C₁₀H₁₁NOS. C, 62.15; H, 5.74; N, 7.25; S, 16.59. Found C, 62.23; H, 5.80; N, 7.15; S, 16.54.

2-(4-Bromo-phenyl)-4, 5-dihydro-[1, 3]-thiazole (6): Colourless solid (m.p.: 90-92 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.71-7.68 (m, 2H), 7.56-7.52 (m, 2H), 4.45 (t, 2H, *J*=8.4 Hz), 3.43 (t, 2H, *J*=8.4 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 167.67, 131.85, 129.98, 125.83, 65.39, 34.09; EIMS: m/z 243 [M⁺+2], 241 [M⁺], 102, 75, 60; Anal. Calcd for C₉H₈BrNS. C, 44.64; H, 3.33; N, 5.78; S, 13.24. Found C, 44.71; H, 3.41; N, 5.63; S, 13.23.

2-(4-Hydroxy-phenyl)-4, 5-dihydro-[1, 3]-thiazole (7): Light yellow solid (m.p.: 198-199 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 9.94 (s, 1H, OH), 7.64-7.58 (m, 2H), 6.85-6.80 (m, 2H), 4.30 (t, 2H, *J*=8.0 Hz), 3.36 (t, 2H, *J*=8.0 Hz); ¹³C NMR (100.6 MHz, DMSO- d_6) δ 165.42, 160.16, 129.84, 124.06, 115.21, 64.54, 33.06.; EIMS: 179 [M⁺], 119, 91, 60.; Anal calc. for C₉H₉NOS. C, 60.31; H, 5.06; N, 7.81; S, 17.89. Found C, 60.43; H, 4.96; N, 7.75; S, 17.91.

2-(3-Nitro-phenyl)-4, 5-dihydro-[1, 3]-thiazole (8): Yellow solid (m.p.: 135-137 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.67 (s, 1H), 8.31 (d, 1H, *J*=6.8 Hz), 8.15 (d, 1H, *J*=7.2 Hz), 7.60 (t, 1H, *J*=8.0 Hz), 4.51 (t, 2H, *J*=8.4 Hz), 3.50 (t, 2H, *J*=8.4 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 166.36, 148.24, 134.84, 134.03, 129.59, 125.55, 123.27, 65.37, 34.30; EIMS: m/z 208 [M⁺], 178, 118, 60; Anal. Calcd for C₉H₈N₂O₂S, C, 51.91; H, 3.87; N, 13.45; S, 15.40. Found C, 51.98; H, 3.98; N, 13.58; S, 15.07.

2-(4-Nitro-phenyl)-4, 5-dihydro-[1, 3]-thiazole (9): Yellow solid (m.p.: 150-152 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, 2H, J_1 =7.2 Hz, J_2 =1.6 Hz), 8.00-7.98 (m, 2H), 4.51 (t, 2H, J=8.4 Hz), 3.50 (t, 2H, J=8.4 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 166.61, 149.22, 138.72, 129.27, 123.71, 65.54, 34.28; EIMS: m/z 208 [M⁺],

178, 118, 60; Anal. Calcd for $C_9H_8N_2O_2S$. C, 51.91; H, 3.87; N, 13.45; S, 15.40. Found C, 51.96; H, 3.97; N, 13.35; S, 15.34.

2-(2, 6-Dichloro-phenyl)-4, 5-dihydro-[1, 3]-thiazole (10): Yellow solid (m.p.: 71-72 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.16 (m, 3H), 4.42 (d, 2H, *J*=8 Hz), 3.48 (d, 2H, *J*=8 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 163.65, 133.49, 132.40, 130.56, 127.80, 64.86, 34.97; EIMS: 231 [M⁺], 185, 171, 150, 136, 123, 109, 100, 75, 60.; Anal calc. for C₉H₇Cl₂NS. C, 46.57; H, 3.04; N, 6.03; S, 13.81. Found C, 46.68; H, 2.91; N, 5.93; S, 13.91.

2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.41(m, 2H), 7.07-7.05 (m, 1H), 4.40 (t, 2H, *J*=8.4 Hz), 3.44 (t, 2H, *J*=8.0 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 161.61, 137.04, 130.75, 129.66, 127.54, 64.70, 34.44; EIMS: m/z 169 [M⁺], 123, 108, 60; Anal. Calcd for C₇H₇NS₂, C, 49.67; H, 4.17; N, 8.27; S, 37.89. Found C, 49.81; H, 4.67; N, 8.34; S, 37.16

2-Thiophen-3-yl-5,6-dihydro-4H-[1, 3]-thiazine (12): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, 1H, *J*=3.6 Hz), 7.35 (d, 1H, *J*=5.2 Hz), 7.02-7.00 (m, 1H), 3.86 (t, 2H, *J*=5.6 Hz), 3.14 (t, 2H, *J*=6.0 Hz), 1.95-1.89 (m, 2H), ¹³C NMR (100.6 MHz, CDCl₃) δ : 152.01, 144.30, 128.00, 127.12, 126.12, 47.69, 26.36, 19.61; EIMS: m/z 183 [M⁺], 136, 127, 110, 74; Anal. Calcd for C₈H₉NS₂, C, 52.42; H, 4.95; N, 7.64; S, 34.99. Found C, 52.54; H, 5.07; N, 7.77; S, 34.61

3-(4, 5-Dihydrothiazol-2-yl)-pyridine (13) : Yellow solid (m.p.: 111-113 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.04 (s, 1H), 8.68 (d, 1H, *J*=4.4 Hz), 8.13 (dt, 1H, *J*₁=8.0 Hz, *J*₂=1.6 Hz), 7.38 (dd, 1H, *J*₁=8.0 Hz, *J*₂=4.8 Hz), 4.48 (t, 2H, *J*=8.4 Hz), 3.46 (t, 2H, *J*=8.4 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 165.67, 151.30, 148.87, 135.96, 129.24, 123.57, 65.11, 33.91; EIMS: m/z 164 [M⁺], 118, 105, 60; Anal. Calcd for C₈H₈N₂S, C, 58.51; H, 4.91; N, 17.06; S, 19.53. Found C, 58.59; H, 4.95; N, 17.09; S, 19.36.

2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 3.64 (t, 2H, *J*=4.0 Hz), 3.00 (t, 2H, *J*=8.0 Hz), 2.17-2.09 (m, 1H), 1.88-1.80 (m, 2H), 1.79-1.76 (m, 4H), 1.47-1.33 (m, 2H), 1.31-1.21 (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃) δ 165.74, 50.49, 47.23, 31.20, 26.33, 26.23, 25.92, 19.45; EIMS: 183 [M⁺], 155, 142, 128, 115, 100, 83, 74, 55.; Anal calc. for C₁₀H₁₇NS. C, 65.52; H, 9.35; N, 7.64; S, 17.49. Found C, 65.63; H, 9.26; N, 7.55; S, 17.54.

2-amino-4, 5-dihydro-[1, 3]-thiazole (15): Yellow solid (m.p.: 80-82 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.22 (s, br, 2H, NH₂), 3.77 (t, 2H, *J*=7.6 Hz), 3.21 (t, 2H, *J*=7.6 Hz); ¹³C NMR (100.6 MHz, DMSO-*d*₆) δ 159.84, 60.07, 35.04. EIMS: 102 [M⁺], 74, 60. Anal calc. for C₃H₆N₂S. C, 35.27; H, 5.92; N, 27.42; S, 31.39. Found C, 35.35; H, 5.80; N, 27.51; S, 31.32.

4. Selected copies of ¹H NMR and ¹³C NMR

- (i) ¹H NMR spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)
- (ii) ¹³C NMR spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)
- (iii) Mass spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)
- (iv) ¹H NMR spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)
- (v) ¹³C NMR spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)
- (vi) Mass spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)
- (vii) ¹H NMR spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)
- (viii) ¹³C NMR spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)
- (ix) Mass spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)

¹H NMR spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)

¹³C NMR spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)

Mass spectra of 2-Thiophen-3-yl-4, 5-dihydro-[1, 3]-thiazole (11)

¹H NMR spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)

¹³C NMR spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)

Mass spectra of 2-Thiophen-3-yl-5, 6-dihydro-4H-[1, 3]-thiazine (12)

¹H NMR spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)

¹³C NMR spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)

Mass spectra of 2-Cyclohexyl-5, 6-dihydro-4H-[1, 3]-thiazine (14)