Dehydrogenative Coupling Reactions Catalysed by Rose Bengal Using Visible Light Irradiation

Yuanhang Pan, Choon Wee Kee, Li Chen and Choon-Hong Tan*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543. chmtanch@nus.edu.sg

Supporting Information

General procedures and methods	S2
Experimental procedure for dehydrogenative nitro-Mannich reaction	S 3
Experimental procedure for dehydrogenative Mannich reaction	S 5
Fluorescence quenching study of RB by tertiary amine	S7
Copies of NMR spectra	S 8
Computational Details	S9
References	S40

General procedures and methods

¹H and ¹³C NMR spectra were recorded on a Bruker ACF300 (300MHz), Bruker DPX300 (300MHz) DRX500 (500MHz) or AMX500 (500MHz) spectrometer. Chemical shifts are reported in parts per million (ppm). The residual solvent peak was used as an internal reference. Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode and a Finnigan/MAT 95XL-T mass spectrometer in FAB mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography separations were performed on Merck 60 (0.040 - 0.063mm) mesh silica gel. Reagents and solvents were commercial grade and were used as supplied without further purification, unless otherwise stated. Irradiation with green light was performed using 0.5-5W LEDs. LEDs were bought from LED POWER SUPPLY, CE-IKEA, TYPE: SLT5-12V. Fluorosence spectra was recorded using SHIMADZU RF-5301.

Representative procedure for oxidative dehydrogenative nitro-Mannich reaction between *N*-aryl-tetrahydroisoquinoline 1a and nitromethane catalyzed by Rose Bengal

1a (20.9 mg, 0.1 mmol, 1.0 equiv.) was added to a solution of RB (5.0 mg, 0.005 mmol, 5 mol%) in 1.0 ml nitromethane **2a**. The reaction mixture was stirred under green LEDs irradiation at room temperature. After 10 hours, the solvent was removed *in vacuo* and the crude product was directly loaded onto a short silica gel column. Flash chromatography was performed using gradient elution with hexane/EA mixtures (40/1 - 15/1 ratio). After removing solvent, product **3a** (24.7 mg) was obtained as yellow oil in 92% yield.

1-(nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a)^[1]

yellow oil, ¹H NMR (500 MHz, $CDCl_{3}$, ppm) δ 7.33 – 7.18 (m, 5H), 7.15 (d, J = 7.4 Hz, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 5.56 (t, J = 7.2 Hz, 1H), 4.88 (dd, J = 11.8, 7.8 Hz, 1H), 4.57 (dd, J = 11.9, 6.7 Hz, 1H), 3.77 – 3.54 (m, 2H), 3.20 – 3.04 (m, 1H), 2.89 – 2.73 (m, 1H). LRMS (ESI)

 $m/z 269.1 (M + H^{+}).$

1-(1-nitroethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3b)^[1]

yellow oil, dr = 3:2, ¹H NMR (500 MHz, CDCl₃, ppm) mixture of the two diastereoisomers: δ 7.31 – 7.08 (m, 6H), 7.03 – 6.96 (m, 2H), 6.85 – 6.79 (m, 1H), 5.31 – 5.18 (m, 1H), 5.08 – 5.02 (m, 0.6H, major isomer), 4.94 – 4.84 (m, 0.4H, minor isomer), 3.89 – 3.77 (m, 0.7H), 3.65 – 3.52 (m, 1.4H), 3.12 –

3.01 (m, 1H), 2.98 – 2.80 (m, 1H), 1.70 (d, J = 6.9 Hz, 1.2H, minor isomer), 1.54 (d, J = 7.6 Hz, 1.8H, major isomer). LRMS (ESI) m/z 283.2 (M + H⁺).

1-(1-nitropropyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3c)^[2]

yellow oil, dr = 3:2, ¹H NMR (500 MHz, CDCl₃, ppm) mixture of the two diastereoisomers: δ 7.54 – 7.10 (m, 6H), 7.07 – 6.90 (m, 2H), 6.88 – 6.68 (m, 1H), 5.25 (d, *J* = 9.2 Hz, 0.3H, minor isomer), 5.14 (d, *J* = 9.5 Hz, 0.5H, major isomer), 4.96 – 4.81 (m, 0.4H, major isomer), 4.77 – 4.62 (m, 0.3H,

minor isomer), 4.48 – 4.29 (m, 0.4H), 3.95 – 3.47 (m, 2H), 3.17 – 2.81 (m, 2H), 2.32 – 1.96 (m, 1.5H), 1.94 – 1.75 (m, 0.5H), 1.06 – 0.89 (m, 3H). LRMS (ESI) m/z 297.2 (M + H⁺).

2-(4-bromophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (3d)^[3]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.37 – 7.32 (m, 2H), 7.29 – 7.17 (m, 3H), 7.14 (d, *J* = 7.3 Hz, 1H), 6.85 (d, *J* = 9.1 Hz, 2H),

5.49 (t, J = 7.2 Hz, 1H), 4.84 (dd, J = 12.0, 8.1 Hz, 1H), 4.57 (dd, J = 12.0, 6.4 Hz, 1H), 3.72 – 3.54 (m, 2H), 3.12 – 3.03 (m, 1H), 2.79 (dt, J = 16.4, 4.8 Hz, 1H). LRMS (ESI) m/z 347.0390, 349.0381 (M + H⁺).

1-(nitromethyl)-2-(*p*-tolyl)-1,2,3,4-tetrahydroisoquinoline (3e)^[3]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.28 – 7.12 (m, 4H), 7.08 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 5.50 (t, J = 7.2 Hz, 1H), 4.85 (dd, J = 11.9, 8.1 Hz, 1H), 4.56 (dd, J = 11.9, 6.4 Hz, 1H), 3.72 – 3.52 (m, 2H), 3.16 – 3.00 (m, 1H), 2.76 (dt, J = 16.4, 4.5 Hz,

1H), 2.27 (s, 3H). LRMS (ESI) m/z 283.1 (M + H⁺).

N,4-dimethyl-*N*-(2-nitroethyl)aniline (3f)^[1]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.08 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 4.56 (t, *J* = 6.4 Hz, 2H), 3.96 (t, *J* = 6.4 Hz, 2H), 2.95 (s, 3H), 2.27 (s, 3H). LRMS (ESI) m/z 195.0 (M + H⁺). **Representative** procedure for dehydrogenative Mannich reaction between *N*-aryl-tetrahydroisoquinoline 1a and acetone catalyzed by Rose Bengal

1a (20.9 mg, 0.1 mmol, 1.0 equiv.) was added to a solution of RB (5.0 mg, 0.005 mmol, 5 mol%) in 1.0 ml acetone **4a**, followed by adding pyrrolidine (2.5 ul, 0.03 mmol, 30 mol%) and TFA (2.3 ul, 0.03 mmol, 30 mol%). The reaction mixture was stirred under green LEDs irradiation at room temperature. After 20 hours. the solvent was removed in vacuo and the crude product was directly loaded onto a short silica gel column. Flash chromatography was performed using gradient elution with hexane/EA mixtures (40/1 - 15/1 ratio). After removing solvent, product **5a** (24.1 mg) was obtained as pale yellow solid in 91% yield.

1-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (5a)^[4]

pale yellow solid, ¹H NMR (500 MHz, $CDCl_{3}$, ppm) δ 7.35 – 7.11 (m, 6H), 6.95 (d, J = 8.2 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 5.41 (t, J = 6.3 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.60 – 3.49 (m, 1H), 3.15 – 3.00 (m, 2H), 2.91 – 2.74 (m, 2H), 2.08 (s, 3H). LRMS (ESI) m/z 266.1 (M + H⁺).

1-(2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (5b)^[5]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 – 7.27 (m, 2H), 7.22 – 7.08 (m, 4H), 6.87 – 6.77 (m, 2H), 5.35 (t, *J* = 6.3 Hz, 1H), 3.65 – 3.56 (m, 1H), 3.54 – 3.43 (m, 1H), 3.10 – 2.96 (m, 2H), 2.91 – 2.74 (m, 2H), 2.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃ ppm) δ 206.9,

147.8, 137.9, 134.2, 132.0, 128.6, 127.0, 126.8, 126.4, 116.1, 110.1, 77.2, 77.0, 76.7, 54.6, 50.1, 42.1, 31.1, 27.0. LRMS (ESI) m/z 344.0 (M + H⁺), HRMS (ESI) m/z 344.0643 calc. for $C_{18}H_{19}^{79}BrNO$, 346.0629 calc. for $C_{18}H_{19}^{81}BrNO$.

1-(2-*p*-tolyl-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (5c)^[5]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.21 – 7.09 (m, 4H), 7.05 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 5.34 (t, *J* = 6.4 Hz, 1H), 3.68 – 3.58 (m, 1H), 3.56 – 3.37 (m, 1H), 3.12 – 2.94 (m, 2H), 2.87 – 2.71 (m, 2H), 2.25 (s, 3H), 2.07 (s, 3H). LRMS (ESI) m/z

 $280.2 (M + H^{+}).$

1-(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (5d)^[4]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.23 – 7.07 (m, 4H), 7.03 – 6.89 (m, 2H), 6.86 – 6.64 (m, 2H), 5.25 (t, *J* = 6.4 Hz, 1H), 3.75 (s, 3H), 3.63 – 3.53 (m, 1H), 3.50 – 3.38 (m, 1H), 3.08 – 2.91 (m, 2H), 2.86 – 2.63 (m, 2H), 2.06 (s, 3H). LRMS (ESI) m/z 296.2

 $(M + H^{+}).$

1-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-2-one (5e)^[4]

yellow oil, ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.36 – 7.21 (m, 2H), 7.21 – 7.06 (m, 4H), 6.95 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.2 Hz, 1H), 5.42 (t, J = 6.4 Hz, 1H), 3.72 – 3.60 (m, 1H), 3.59 – 3.48 (m, 1H), 3.15 – 2.97 (m, 2H), 2.92 – 2.68 (m, 2H), 2.46 – 2.17 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H). LRMS

(ESI) $m/z 280.2 (M + H^{+})$.

Procedure for *L*-Proline and Rose Bengal co-catalyzed oxidative Mannich reaction between *N*-aryl-tetrahydroisoquinoline 1d and cyclohexanone 4c

1d (23.9 mg, 0.1 mmol, 1.0 equiv.) was added to a solution of RB (5.0 mg, 0.005 mmol, 5 mol%) in 1.0 ml CH₃CN, followed by adding cyclohexanone 4c (103.5 ul, 1.0 mmol, 10.0 equiv.) and *L*-Proline (3.5 mg, 0.03 mmol, 30 mol%). The reaction mixture was stirred under green LEDs irradiation at room temperature. After 60 hours, the solvent was removed in vacuo and the crude product was directly loaded onto a short silica gel column. Flash chromatography was performed using gradient elution with hexane/EA mixtures (40/1 - 15/1 ratio). After removing solvent, product 5f (22.1 mg) was obtained as yellow solid in 66% yield with 9:1 dr.

yellow solid, ¹H NMR (500 MHz, CDCl₃, ppm) major isomer (*syn*): δ 7.21 – 7.05 (m, 4H), 6.88 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 9.1 Hz, 2H), 5.36 (d, *J* = 5.5 Hz, 1H), 3.74 (s, 3H), 3.70 – 3.58 (m, 1H), 3.52 – 3.40 (m, 1H), 2.97 – 2.72 (m, 3H), 2.51 – 2.41 (m, 1H), 2.32 – 2.21 (m, 1H), 1.91 – 1.60 (m, 6H). ¹³C NMR (75 MHz, CDCl₃ ppm) major isomer (*syn*): δ 212.3, 153.3, 144.2,

136.4, 135.3, 129.1, 128.0, 126.8, 125.8, 118.5, 114.8, 77.6, 77.2, 76.8, 56.6, 56.1, 55.8, 44.1, 41.3, 30.5, 27.7, 26.8, 23.6. LRMS (ESI) m/z 336.2 (M + H⁺), HRMS (ESI) m/z 336.1975 calc. for $C_{22}H_{26}NO_2$ 336.1958.

Fluorescence quenching study of RB by tertiary amine

Black curve shows the fluorescence spectra of RB (1.6 uM in CH_3CN). Excited at 510nm, PL: 589 nm. Pink curve shows the spectra of amine **1a** (1.0 mM in CH_3CN). Red curve shows the spectra after adding 20 ul of amine **1a** solution to RB (3 ml). The spectra reveals that the fluorescence of RB is quenched with the addition of tertiary amine.

Figure S1 Fluorescence quenching spectra

S8

Computational Details

All DFT calculations were performed using Gaussian 09 program (Revision A.02).¹ Geometries were optimized at UM06- $2X^2/6-31+G(d,p)$. The optimized structures were confirmed to be true minima using vibrational frequency analysis: no imaginary frequency. Conformational sampling was performed with MacroModel. Single point calculations were perfomed on the UM06-2X/6-31+G(d,p) geometries at UM06-2X/6-311++G(2df,2p) both in the gas phase and in nitromethane *via* the IEFPCM continuum model with radii and non-electrostatic terms from Truhlar and coworkers' SMD solvation model.³ Zero point correction and thermal correction to energy, enthalpy and Gibbs free energy are obtained at 298.15 K, 1 atmosphere, and the most abundant isotopes.

Tabl	e I:	UM06-2X/6-	-31+G(d,p)*	and singl	e point	calculation	at	UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p)"
resul	t for	neutral spec	ies					

Compound	1a-Conformation 1	1a-Conformation 2	1a-Conformation 3	3 -Conformation 1	
UM06-2X/6-31+G(d,p) ^a	-635.13745	-635.138668	-635.138786	-405.362897	
UM06-2X	(25 2070709	(25.2079450	(25.207(7(2)	105 1727776	
/6-311++G(2df,2p) ^b	-035.3070798	-035.3078459	-033.3070702	-405.4737776	
Zero Point Correction ^a	0.265052	0.264996	0.265379	0.202196	
Thermal correction to	0.279510	0.279197	0.079255	0.21252	
Enthalpy ^a	0.278519	0.278187	0.278355	0.21353	
Thermal correction to	0.225024	0.2250.4	0.006450	0.1((12)	
Gibbs Free Energy ^a	0.225034	0.22594	0.226459	0.100131	

 $\label{eq:table 2: UM06-2X/6-31+G(d,p)^a and single point calculation at UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p)^b result for cationic species$

Compound	$1a^+$ -Conformation 1	1a ⁺ -Conformation 2	1a ⁺ -Conformation 3	3 ⁺ -Conformation 1	
UM06-2X/6-31+G(d,p) ^a	-634.877976	-634.876591	-634.876591	-405.106697	
UM06-2X	(25.04(0202	(25.044(091	(25.044(091	405 21 (2101	
/6-311++G(2df,2p) ^b	-035.0400502	-035.0440981	-035.0440981	-405.2162101	
Zero Point Correction ^a	0.265393	0.265657	0.265657	0.202666	
Thermal correction to	0.27866	0 2780 48	0.2780.48	0.014122	
Enthalpy ^a	Enthalpy ^a		0.278948	0.214133	
Thermal correction to	0.225672	0.225261	0.225261	0 16594	
Gibbs Free Energy ^a	0.225075	0.225301	0.225361	0.10584	

Compound	1a-Conformation	1a-Conformation	1a-Conformation	3-Conformation	
	1	2	3	1	
UM06-2X/6-31+G(d,p) ^a	-635.157916	-635.159481	-635.159032	-405.375551	
UM06-2X	625 22692	625 2278001	625 2070252	105 1959566	
/6-311++G(2df,2p) ^b	-055.52082	-055.5278001	-055.5272555	-405.4858500	
Zero Point Correction ^a	0.264543	0.264782	0.265207	0.201894	
Thermal correction to	0 278027	0 277028	0.27919	0.212202	
Enthalpy ^a	0.278037	0.277938	0.27818	0.213202	
Thermal correction to	0 224514	0 225871	0 226208	0 16593	
Gibbs Free Energy ^a	0.224314	0.223871	0.220208	0.10583	

Table3:SMD/UM06-2X/6-31+ $G(d,p)^a$ andsinglepointcalculationatSMD/UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+ $G(d,p)^b$ result for neutral species

Table4:SMD/UM06-2X/6-31+G(d,p)andsinglepointcalculationatSMD/UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p)result for cationic species

Compound	1a ⁺ -Conformatio	1a ⁺ -Conformatio	1a ⁺ -Conformatio	3 ⁺ -Conformatio
	n 1	n 2	n 3	n 1
UM06-2X/6-31+G(d,p) ^a	-634.96874	-634.96808	-634.96808	-405.192735
UM06-2X /6-311++G(2df,2p) ^b	-635.1358661	-635.1352199	-635.1352198	-405.301676
Zero Point Correction ^a	0.265159	0.265491	0.265492	0.20252
Thermal correction to Enthalpy ^a	0.278373	0.278768	0.278768	0.213819
Thermal correction to Gibbs Free Energy ^a	0.225744	0.225084	0.225088	0.166294

Table5:SMD/UM06-2X/6-31+G(d,p)andsinglepointcalculationatSMD/UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p)result for Iminium

Compound	1a-H ⁺ -Conformation	1a-H ⁺ -Conformation	3-H ⁺ -Conformation	
	1	2	1	
UM06-2X/6-31+G(d,p) ^a	-404.605	-634.403962	-634.403962	
UM06-2X	404 715	624 5711247	634 5706556	
/6-311++G(2df,2p) ^b	-404./13	-034.3711347	-034.3700330	
Thermal correction to	0.216064	0.216104	0 157068	
Gibbs Free Energy ^a	0.210004	0.210104	0.137908	

The relative stability between the iminium of **1a** and **3** is obtained by ΔG_1 - ΔG_2 , as the Gibbs free energy of hydrogen radical, ΔG_1 - $\Delta G_2 = (G_{1a-H+} - G_{1a+}) - (G_{3-H+} - G_{3+})$.

Table 6: Ionization Potential, $\Delta G^{\circ}_{S}(X^{+})$ and $\Delta G^{\circ}_{S}(X)$

Compound	Ionization	$\Delta G^{\circ}_{\mathrm{ox,gas}}$	$\Delta G^{\circ}_{\mathrm{ox,solv}}$
	Potential (eV)		
1a	7.14	7.13	5.24
3	7.02	7.00	5.02

Definition for Table 6

For **1a** in which the relative Gibbs free energies for different conformers were sufficiently close, the quantities in Table 6 are calculated as weighted averages over the conformers using the Boltzmann distribution.

Ionization Potential = $(E_{radical \ cation,gas} + ZPE) - (E_{neutral,gas} + ZPE)$, where E refers to the electronic energy from UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p) and ZPE refers to the zero point energy at UM06-2X/6-31+G(d,p)

 ΔG° ox,gas = $G_{radical \ cation,gas}$ - $G_{neutral,gas}$, where G refers to sum the electronic energy from UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p) and thermal correction to Gibbs free energy at UM06-2X/6-31+G(d,p)

 $\Delta G^{\circ} ox, solv = G_{radical \ cation, solv} - G_{neutralsolv}$, where G refers to sum the electronic energy from SMD-UM06-2X/6-311++G(2df,2p)//UM06-2X/6-31+G(d,p) and thermal correction to Gibbs free energy at SMD-UM06-2X/6-31+G(d,p). Solvent being modeled is nitromethane.

Standard Redox Potential Calculation

Calculations were performed using a slightly modified methodology from reference Guo and co-workers⁹: Closed-shell restricted wavefunction was used for *N*,*N*-dimethylaniline and its derivatives, Unrestricted open-shell wavefunctions were used for all cationic radical of *N*,*N*-dimethylaniline and its derivatives. The B3LYP functional was used for all calculations. Geometry optimizations were performed at B3LYP/6-31+G(d). Additional single point calculations were performed at B3LYP/6-31++G(2df,2p). Solvation free energies were obtained B3LYP/6-31++G(d,p) using the IEFPCM solvation model from B3LYP/6-31++G(d) optimized structures. Alpha=1.20 was specified in

SCRF calculation. (Guo and coworkers used D-PCM which is not implemented in Gaussian 09). -4.44eV was used for the free energy associated with the NHE half cell.¹⁰

It was found that experimental E^0 are systematically underestimated by calculations described above (Table 7. Uncorrected). Guo and co-workers added 0.28eV to the calculated adiabiatic ionization potential, which contributes to an improvement in their calculated E^0 when compared with the experimental E^0 .

Optimization of the solvation model used to calculate the solvent free energies is important, in this study we used an unoptimized IEFPCM model as implemented in Gaussian 09 with alpha=1.20 (Table 7, Ref 9*). The results for most compound is similar to those reported by Guo and coworkers (Table 7, Ref 9). By applying a simple linear regression model, the corrected E^0 can be obtained which is in excellent agreement with the experimental E^0 (table 7, Corrected). Since this is a preliminary study, a small dataset of 6 compounds (Table 7, entries 1-6) was used to train the linear regression model and no validation of the model was performed. As the compounds which we are interested to predict the E^0 are structurally similar to the compounds in the dataset, it is expected that the predicted E^0 should be fairly accurate, however, further studies would be required to affirm this.

Table 7: Experimental and Calculated E^{0} values in MeCN (References for experimental can be found in the supporting information of reference 9)

	Compound	E^0 vs NHE	E^0 vs NHE	E^0 vs NHE	E^0 vs NHE	E^0 vs NHE
		/eV	/eV	/eV	/eV	/eV
		(Experimental)	(Uncorrected)	(Ref 9)	(Ref 9*)	(Corrected)
1	∧ N	1.10	0.79	1.13	1.07	1.10
2	NN	0.41	-0.08	0.14	0.20	0.47
3		0.79	0.29	0.61	0.57	0.73
4		0.83	0.43	0.67	0.71	0.84
5	oN	0.84	0.40	0.58	0.68	0.82
6	O ₂ N-N	1.52	1.39	1.53	1.67	1.54
7		N/A	0.68	N/A	0.96	1.02
8	N _{Ph}	N/A	0.84	N/A	1.12	1.14

Cartesian Coordinates

1a-conformation 1 gas phase

С	-0.32874900	-0.85043100	0.48729200
С	-1.77374500	-0.58959700	0.13478000
С	-2.29864800	0.69796500	0.27641600
С	-1.34619800	1.77690900	0.70932800
С	-0.00825700	1.60726200	-0.00650700
Н	-2.18617400	-2.62889600	-0.41019000
Н	0.02477300	-1.70318300	-0.10573300
С	-2.60004500	-1.63054400	-0.29000000
С	-3.64349600	0.93104300	-0.01213000
Н	-1.75598800	2.76792200	0.49182200
Н	0.69713700	2.35390100	0.37190300
С	-4.46914900	-0.11209800	-0.42542900
С	-3.94560100	-1.39692900	-0.56415900
Н	-4.04381600	1.93696000	0.08750900
Н	-5.51458300	0.07835200	-0.64717100
Н	-4.58058000	-2.21265200	-0.89508500
Н	-0.27246800	-1.15698700	1.54570200
Н	-1.17647100	1.72054500	1.79293200
Н	-0.14564400	1.79163100	-1.08512800
Ν	0.54898100	0.28962300	0.24601800
С	1.90340200	0.06234800	0.06694300
С	2.73514600	1.02077700	-0.54842800
С	2.50013500	-1.14040400	0.50015100
С	4.09588800	0.78199900	-0.71051700
Н	2.31742300	1.94601600	-0.92705000
С	3.86167200	-1.36304900	0.32539300
Н	1.90614900	-1.89647100	1.00005100
С	4.67690100	-0.40826500	-0.27872600
Н	4.70556300	1.53965300	-1.19450000
Н	4.28817000	-2.29782300	0.67792300
Н	5.73810400	-0.58823900	-0.41154700

1a-conformation 2 gas phase

С	-0.32818500	-0.90840400	0.19309900
С	-1.79554800	-0.57156100	0.02586000
С	-2.24835400	0.75132900	0.00782400
С	-1.26417100	1.88938800	0.13871000
С	0.04626500	1.40534400	0.74095800

Н	-2.35927500	-2.64392200	-0.07482700
Н	-0.05452800	-1.67648500	-0.53811600
С	-2.71738300	-1.61662400	-0.09037800
С	-3.61764000	1.00152800	-0.13166500
Н	-1.06338200	2.31762000	-0.85113300
Н	-0.10427900	1.12948700	1.80079200
С	-4.52998500	-0.04014200	-0.25182000
С	-4.07629100	-1.35982600	-0.22946100
Н	-3.96611100	2.03183700	-0.14209700
Н	-5.58902200	0.17273900	-0.35912400
Н	-4.77874700	-2.18210800	-0.32223400
Н	-0.17939700	-1.34717500	1.19965900
Н	-1.69287000	2.68332800	0.76052900
Н	0.79614300	2.19545000	0.71450700
Ν	0.52679000	0.24585200	-0.00955700
С	1.91596500	0.01845900	-0.03432200
С	2.78128300	1.06847800	-0.39338000
С	2.48079400	-1.23560700	0.24096400
С	4.15383400	0.87436900	-0.45068100
Н	2.36600500	2.03513700	-0.66041200
С	3.86198200	-1.42373600	0.16755200
Н	1.85434700	-2.07314900	0.52361900
С	4.70988100	-0.37551700	-0.16907700
Н	4.79443800	1.70371100	-0.73540000
Н	4.27166300	-2.40547900	0.38666100
Н	5.78280800	-0.52681800	-0.22063400

1a-conformation 3 gas phase

С	0.48541200	0.43061700	1.65521500
С	1.58444400	0.00749000	0.69578200
С	1.66076900	0.57740800	-0.58195900
С	0.61886400	1.57538300	-1.04394800
С	-0.17898900	2.14442600	0.13164200
Н	2.47193700	-1.36681300	2.08913500
Н	0.89811900	1.15193800	2.37328000
С	2.54226300	-0.92765900	1.09571700
С	2.70172600	0.19147200	-1.43304000
Н	1.09822500	2.38382800	-1.60757900
Н	-1.02634200	2.73377600	-0.22456000
С	3.65246600	-0.74093500	-1.03153800
С	3.57295800	-1.30584900	0.24178000
Н	2.76244500	0.63296700	-2.42542400
Н	4.45244100	-1.02686900	-1.70739600

Н	4.30742000	-2.03734400	0.56434800
Н	0.13332000	-0.42360900	2.24103400
Н	-0.07670600	1.07413100	-1.73115800
Н	0.44927800	2.80713000	0.73817700
N	-0.65133500	1.06887800	1.01054800
С	-1.63193500	0.22116800	0.43824000
С	-2.84995200	0.78895400	0.02871000
С	-1.45606900	-1.16022200	0.28095100
С	-3.85293300	0.00251600	-0.52248800
Н	-3.01399100	1.85203200	0.17686600
С	-2.47565900	-1.94582800	-0.25858200
Н	-0.51767300	-1.62981100	0.55642900
С	-3.67559600	-1.37483900	-0.66829700
Н	-4.78779600	0.46579500	-0.82401400
Н	-2.31524100	-3.01413500	-0.37018800
Н	-4.46271000	-1.98977200	-1.09190100

1a-conformation 1 scrf=(smd,solvent=nitromethane)

С	-0.34081400	-0.83375400	0.57870700
С	-1.77602800	-0.59704600	0.17751700
С	-2.29709100	0.69750800	0.28739800
С	-1.34448900	1.76163700	0.75328900
С	-0.00611700	1.61777000	0.03131300
Н	-2.17885400	-2.64215400	-0.35771800
Н	0.00791700	-1.74988500	0.09262600
С	-2.59086900	-1.63996500	-0.26540400
С	-3.62815500	0.93939400	-0.05541600
Н	-1.74995800	2.76048200	0.57100600
Н	0.70475300	2.33634800	0.45206800
С	-4.44440300	-0.10619700	-0.48954500
С	-3.92561300	-1.39770700	-0.59302300
Н	-4.02473900	1.94915600	0.01985100
Н	-5.48026700	0.08824100	-0.75214300
Н	-4.55532000	-2.21290400	-0.93704900
Н	-0.28923200	-1.00779300	1.66691400
Н	-1.17544000	1.66348300	1.83418300
Н	-0.13663400	1.86466200	-1.03327300
Ν	0.53561100	0.27075800	0.19186500
С	1.88693300	0.04903300	0.03959100
С	2.72047500	1.01973800	-0.56498800
С	2.49459500	-1.15146600	0.47690400
С	4.08444200	0.79088300	-0.72119900
Н	2.29864500	1.94710000	-0.93534700

С	3.86034500	-1.36181900	0.30673500
Н	1.90718300	-1.91661400	0.97115500
С	4.67385500	-0.39918100	-0.29187800
Н	4.69103500	1.55743200	-1.19650500
Н	4.29149600	-2.29470100	0.66058200
Н	5.73774300	-0.57112700	-0.41941600

1a-conformation 2 scrf=(smd,solvent=nitromethane)

С	-0.32731500	-0.90344900	0.22181300
С	-1.79379400	-0.57109200	0.04019100
С	-2.25048000	0.75228800	0.01130400
С	-1.27163400	1.89513800	0.14120700
С	0.04911400	1.42174200	0.72640900
Н	-2.35007900	-2.64711100	-0.05693200
Н	-0.05676200	-1.69849100	-0.47972500
С	-2.71221700	-1.62129200	-0.08019100
С	-3.62091700	0.99847900	-0.14251900
Н	-1.08855500	2.33717600	-0.84635200
Н	-0.08201400	1.14975600	1.78847500
С	-4.52988200	-0.04796900	-0.26471100
С	-4.07209000	-1.36797100	-0.23180200
Н	-3.97147900	2.02816300	-0.16132400
Н	-5.58915800	0.16149500	-0.38215000
Н	-4.77214200	-2.19286600	-0.32647600
Н	-0.17514800	-1.30389500	1.24152500
Н	-1.69835800	2.68097000	0.77361300
Н	0.78926900	2.21924900	0.67814500
Ν	0.52576300	0.25082400	-0.01922500
С	1.91430700	0.02143100	-0.03690600
С	2.78659600	1.07358100	-0.38261600
С	2.47452100	-1.23958100	0.22835400
С	4.15971700	0.87207200	-0.44218100
Н	2.38089400	2.04985700	-0.63037600
С	3.85641900	-1.43288100	0.15386000
Н	1.84509100	-2.07861300	0.50091200
С	4.71090700	-0.38462300	-0.17356100
Н	4.80403300	1.70306400	-0.71544400
Н	4.26077500	-2.41924500	0.36455800
Н	5.78378900	-0.54050400	-0.22578200

1a-conformation 3 scrf=(smd,solvent=nitromethane)

C 0.50927200 0.36241700 1.7062950	С	0.50927200	0.36241700	1.70629500
-----------------------------------	---	------------	------------	------------

S16

С	1.56985200	-0.03515800	0.69464700
С	1.64344600	0.63030100	-0.53869000
С	0.64263900	1.71100800	-0.89964200
С	-0.15888300	2.17881900	0.31648200
Н	2.41598200	-1.55782700	1.95353300
Н	0.94368500	1.06987400	2.42299200
С	2.48928700	-1.04477500	0.99642800
С	2.64447100	0.26240100	-1.44625800
Н	1.15893200	2.55997600	-1.36054200
Н	-0.99463200	2.80951300	0.01192400
С	3.55906900	-0.74282200	-1.14174400
С	3.48209000	-1.40174300	0.08762900
Н	2.70337700	0.77670300	-2.40343100
Н	4.32863400	-1.01261200	-1.85935000
Н	4.18664100	-2.19160900	0.33162100
Н	0.18150000	-0.50370000	2.28607600
Н	-0.04970400	1.31570400	-1.65546300
Н	0.47170800	2.77484300	0.98420500
Ν	-0.63587900	1.02581800	1.09545800
С	-1.60118100	0.21318300	0.46399400
С	-2.72652000	0.81596400	-0.13350600
С	-1.51433300	-1.18965700	0.43311800
С	-3.71886000	0.04594600	-0.72886400
Н	-2.83491900	1.89551900	-0.11455000
С	-2.52277200	-1.95346100	-0.15834300
Н	-0.65799100	-1.70059700	0.85832000
С	-3.62993700	-1.34857100	-0.74665700
Н	-4.57508800	0.54248900	-1.17704800
Н	-2.42506000	-3.03558900	-0.16476000
Н	-4.40774500	-1.94652800	-1.21106200

3-conformation 1 gas phase

С	-0.06984600	1.20208400	-0.06522700
С	0.66259600	0.00028200	-0.10368000
С	-0.07110300	-1.20176000	-0.06715900
С	-1.46093600	-1.18897200	-0.02160100
С	-2.19053800	0.00114900	0.00300400
С	-1.46050300	1.19003700	-0.01972400
Н	0.43973600	2.15769200	-0.07699300
Н	0.43817800	-2.15753600	-0.08067700
Н	-1.99042000	-2.13917200	-0.00083700
Н	-1.98918900	2.14051300	0.00259500
Ν	2.05328300	-0.00057900	-0.19298800

С	2.75177200	-1.23495600	0.10569100
Н	3.82524300	-1.06510400	0.01346400
Н	2.53997600	-1.60880200	1.12039100
Н	2.48150800	-2.01520300	-0.61187900
С	2.75248400	1.23411700	0.10235800
Н	3.82579600	1.06398200	0.00884400
Н	2.48104400	2.01295300	-0.61631800
Н	2.54216000	1.61002300	1.11663400
С	-3.69608500	-0.00062700	0.08887900
Н	-4.03507800	-0.09287700	1.12681600
Н	-4.11481900	0.92561200	-0.31395600
Н	-4.12416300	-0.83615400	-0.47239700

3-conformation 1 scrf=(smd,solvent=nitromethane)

С	0.07284500	-1.20339600	-0.07617500	
С	-0.66451000	0.00004700	-0.11457000	
С	0.06829300	1.20350600	-0.05274200	
С	1.46073200	1.19233000	0.00992600	
С	2.19365600	0.00294200	0.02401400	
С	1.46345900	-1.18958800	-0.01389000	
Н	-0.43572500	-2.16011400	-0.09490300	
Н	-0.44207500	2.15929700	-0.04830700	
Н	1.98717400	2.14354000	0.05874400	
Н	1.99317700	-2.14000000	0.01285800	
Ν	-2.05302900	-0.00431000	-0.22301100	
С	-2.75911900	1.22915600	0.08370000	
Н	-3.82767000	1.06486100	-0.06045100	
Н	-2.59079600	1.56603400	1.11906000	
Н	-2.45472100	2.03049300	-0.59434700	
С	-2.75256800	-1.23087200	0.12734100	
Н	-3.82502000	-1.06439500	0.01987400	
Н	-2.47579200	-2.04602000	-0.54626200	
Н	-2.54809100	-1.54896000	1.16180900	
С	3.70066100	0.00051400	0.06503600	
Н	4.08497600	0.94680800	0.45610200	
Н	4.07900600	-0.80920500	0.69644900	
Н	4.12606900	-0.14000000	-0.93537700	

1a⁺-conformation 1 gas phase

С	-0.35775000	-0.78083500	0.76361500
С	-1.75706700	-0.58744900	0.23710900
C	-2.30160100	0.69685000	0.29114200

С	-1.37939800	1.77562600	0.78563100
С	-0.02197300	1.63841800	0.09815400
Н	-2.07528800	-2.65357500	-0.29643200
Н	0.03302300	-1.74085700	0.43053900
С	-2.50536200	-1.65664000	-0.24897300
С	-3.60598500	0.91169200	-0.14464400
Н	-1.77062100	2.77224300	0.56687600
Н	0.69007200	2.36543200	0.49393500
С	-4.36402300	-0.15915800	-0.61690900
С	-3.81600600	-1.43982900	-0.67009600
Н	-4.03000400	1.91145600	-0.11328600
Н	-5.38259800	0.00788100	-0.95113200
Н	-4.40630600	-2.26918000	-1.04459900
Н	-0.34490900	-0.75811800	1.86376100
Н	-1.24643000	1.71320800	1.87372600
Н	-0.13739900	1.79934100	-0.98123700
Ν	0.55436200	0.28975800	0.29593000
С	1.86799200	0.05755800	0.07456700
С	2.66953200	1.03159000	-0.60252300
С	2.48916100	-1.15452600	0.51585100
С	4.00463500	0.78961000	-0.83218200
Н	2.22306200	1.94548000	-0.97326600
С	3.82983600	-1.36594600	0.28737100
Н	1.92560900	-1.89166600	1.07276300
С	4.59741100	-0.40526900	-0.39106700
Н	4.59832500	1.52432500	-1.36465800
Н	4.29519400	-2.27863300	0.64282100
Н	5.65132600	-0.58579300	-0.57359400

1a⁺-conformation 2 gas phase

С	-0.39301800	-0.97762700	0.75310700
С	-1.76507300	-0.56902500	0.23567300
С	-2.07832200	0.74959400	-0.10139100
С	-1.05313400	1.84516900	0.07054900
С	-0.00066400	1.41071600	1.08721900
Н	-2.47372900	-2.60214100	0.35995800
Н	-0.02955600	-1.81588400	0.16114100
С	-2.72241400	-1.57738100	0.09400900
С	-3.35714300	1.03988200	-0.58629800
Н	-0.56759800	2.08346400	-0.88418600
Н	-0.47837000	1.22558800	2.05682600
С	-4.30822500	0.03742900	-0.73098100
С	-3.99089600	-1.27712900	-0.38610500

Н	-3.60522800	2.06559300	-0.84595700
Н	-5.29718000	0.27907000	-1.10559500
Н	-4.72975700	-2.06406600	-0.49194800
Н	-0.45494000	-1.29086800	1.80505500
Н	-1.52858100	2.76187700	0.43171300
Н	0.78749200	2.14366900	1.23714700
Ν	0.57035000	0.12556800	0.66848000
С	1.84036900	-0.02521200	0.22770500
С	2.62422000	1.11249800	-0.14689700
С	2.43138800	-1.32518600	0.13370600
С	3.91538500	0.94539000	-0.59342200
Н	2.19421600	2.10582300	-0.13292800
С	3.73063600	-1.46404800	-0.29883100
Н	1.88365000	-2.20187700	0.45435200
С	4.48253500	-0.33709300	-0.66951800
Н	4.49280200	1.81169400	-0.89640600
Н	4.17727600	-2.45118400	-0.34329700
Н	5.50320300	-0.45761100	-1.01639300

1a⁺-conformation 3 gas phase

С	0.39301400	-0.97763400	0.75306600
С	1.76507800	-0.56902600	0.23565900
С	2.07833100	0.74959400	-0.10139500
С	1.05313800	1.84516600	0.07053700
С	0.00066700	1.41070900	1.08720300
Н	2.47373600	-2.60214200	0.35995100
Н	0.45492200	-1.29090400	1.80500600
С	2.72242300	-1.57738100	0.09400900
С	3.35715900	1.03988600	-0.58628100
Н	1.52858000	2.76187600	0.43170200
Н	-0.78748700	2.14366200	1.23713600
С	4.30824500	0.03743400	-0.73095100
С	3.99091200	-1.27712500	-0.38608400
Н	3.60524600	2.06559800	-0.84593200
Н	5.29720600	0.27907900	-1.10554900
Н	4.72977700	-2.06406100	-0.49191700
Н	0.02955600	-1.81587400	0.16107300
Н	0.56760500	2.08345800	-0.88420100
Н	0.47837300	1.22557400	2.05680900
Ν	-0.57035000	0.12556500	0.66845600
С	-1.84037600	-0.02521200	0.22769800
С	-2.62423200	1.11250000	-0.14688700
С	-2.43139500	-1.32518600	0.13369700

С	-3.91540300	0.94539500	-0.59339700
Н	-2.19422900	2.10582500	-0.13291700
С	-3.73064900	-1.46404500	-0.29882400
Н	-1.88365200	-2.20187800	0.45433100
С	-4.48255200	-0.33708800	-0.66949400
Н	-4.49282400	1.81170000	-0.89636800
Н	-4.17728800	-2.45118100	-0.34329100
Н	-5.50322600	-0.45760500	-1.01635700

1a⁺-conformation 1 scrf=(smd,solvent=nitromethane)

С	-0.35491900	-0.77738400	0.76469300
С	-1.75535000	-0.58425400	0.24248600
С	-2.29773900	0.70272600	0.28129600
С	-1.37558300	1.77994400	0.77409900
С	-0.01283500	1.64047800	0.10356300
Н	-2.07471100	-2.65268200	-0.26416000
Н	0.02917900	-1.74124000	0.43901900
С	-2.50937100	-1.65695100	-0.23018600
С	-3.60270200	0.91575300	-0.15974600
Н	-1.76338000	2.77593500	0.54868300
Н	0.69244000	2.36066400	0.52042600
С	-4.36574200	-0.15842700	-0.62048500
С	-3.82089100	-1.44277800	-0.65559400
Н	-4.01914900	1.91968800	-0.14172600
Н	-5.38386300	0.00842600	-0.95964600
Н	-4.41321800	-2.27620800	-1.02076500
Н	-0.34336000	-0.74520800	1.86387600
Н	-1.25033900	1.70825800	1.86205700
Н	-0.10265800	1.81536600	-0.97558800
Ν	0.55287100	0.28867500	0.29338000
С	1.86638500	0.05264400	0.07174800
С	2.67040700	1.03774100	-0.58371400
С	2.47946200	-1.16957800	0.49158600
С	4.00740700	0.79615600	-0.81017700
Н	2.22849600	1.96091500	-0.93678500
С	3.82244800	-1.37765000	0.26518800
Н	1.91212500	-1.92239000	1.02340300
С	4.59575400	-0.40651100	-0.38874900
Н	4.60474800	1.54160900	-1.32393900
Н	4.28250500	-2.29975800	0.60371500
Н	5.65070000	-0.58554600	-0.56828100

1a⁺-conformation 2 scrf=(smd,solvent=nitromethane)

С	-0.39793200	-0.94872600	0.83468400
С	-1.75397400	-0.56007200	0.26720800
С	-2.06224200	0.75160300	-0.10762300
С	-1.04183900	1.85064400	0.06268900
С	0.00439200	1.43895400	1.09275200
Н	-2.45487600	-2.59015200	0.41332600
Н	-0.03837400	-1.83130800	0.31102100
С	-2.70740400	-1.57350600	0.12080300
С	-3.33073100	1.02761300	-0.63147600
Н	-0.54665100	2.07167100	-0.89053700
Н	-0.47187300	1.27381900	2.06598200
С	-4.27833800	0.01976100	-0.77850800
С	-3.96604800	-1.28766700	-0.39738800
Н	-3.57054100	2.04865300	-0.91848300
Н	-5.25871900	0.25109900	-1.18422200
Н	-4.70015700	-2.08005100	-0.50673300
Н	-0.48452500	-1.18446600	1.90355400
Н	-1.52564600	2.77005700	0.40434700
Н	0.78741300	2.18012200	1.21928300
Ν	0.56810000	0.14346300	0.69942600
С	1.82751100	-0.02321600	0.23778900
С	2.61944000	1.10785600	-0.13954600
С	2.39956000	-1.33008300	0.12418800
С	3.90299300	0.92699100	-0.60431700
Н	2.20658800	2.10749900	-0.10593000
С	3.69119700	-1.47981500	-0.32945300
Н	1.84573200	-2.20577900	0.43529900
С	4.45312900	-0.36057300	-0.69945300
Н	4.48694200	1.79020900	-0.90454100
Н	4.12187900	-2.47328000	-0.39181900
Н	5.46781900	-0.49091700	-1.06062200

1a⁺-conformation 3 scrf=(smd,solvent=nitromethane)

С	0.39788700	-0.94878000	0.83428700
С	1.75402100	-0.56008800	0.26706700
С	2.06236000	0.75159900	-0.10765300
С	1.04194800	1.85063800	0.06259500
С	-0.00436900	1.43891700	1.09254900
Н	2.45490000	-2.59017500	0.41323300
Н	0.48433300	-1.18476600	1.90311600
С	2.70747400	-1.57352000	0.12078300
С	3.33093700	1.02762700	-0.63128600

1.52574000	2.77002200	0.40436000
-0.78736800	2.18010400	1.21908100
4.27856300	0.01977700	-0.77820500
3.96620500	-1.28766500	-0.39718600
3.57079600	2.04867900	-0.91820800
5.25901400	0.25113000	-1.18374200
4.70033100	-2.08004700	-0.50643500
0.03836100	-1.83123100	0.31037500
0.54686900	2.07174200	-0.89066800
0.47182200	1.27372000	2.06580800
-0.56810600	0.14346200	0.69914000
-1.82759500	-0.02319900	0.23770500
-2.61959400	1.10787800	-0.13947100
-2.39965400	-1.33006700	0.12413300
-3.90320200	0.92701600	-0.60409200
-2.20678200	2.10753700	-0.10583200
-3.69134800	-1.47979500	-0.32934600
-1.84578300	-2.20577400	0.43513600
-4.45333500	-0.36054900	-0.69921900
-4.48719800	1.79024100	-0.90420500
-4.12202800	-2.47326200	-0.39168600
-5.46806600	-0.49089300	-1.06027300
	1.52574000 -0.78736800 4.27856300 3.96620500 3.57079600 5.25901400 4.70033100 0.03836100 0.54686900 0.47182200 -0.56810600 -1.82759500 -2.61959400 -2.39965400 -3.90320200 -2.20678200 -3.69134800 -1.84578300 -4.45333500 -4.45719800 -4.12202800 -5.46806600	1.525740002.77002200-0.787368002.180104004.278563000.019777003.96620500-1.287665003.570796002.048679005.259014000.251130004.70033100-2.080047000.03836100-1.831231000.546869002.071742000.471822001.27372000-0.568106000.14346200-1.82759500-0.02319900-2.619594001.10787800-2.39965400-1.33006700-3.903202000.92701600-2.206782002.10753700-3.69134800-1.47979500-1.84578300-2.20577400-4.45333500-0.36054900-4.487198001.79024100-4.12202800-2.47326200-5.46806600-0.49089300

3a⁺-conformation 1 gas phase

С	0.08631700	-1.22703000	0.06120400
С	-0.64814200	0.00063600	0.00081800
С	0.08049400	1.22967400	-0.06212900
С	1.45570000	1.21583900	-0.07137300
С	2.17966400	0.00751100	-0.00750800
С	1.45874200	-1.20667800	0.06159300
Н	-0.43399800	-2.17386700	0.13792600
Н	-0.44359200	2.17457900	-0.13729600
Н	1.99732000	2.15459300	-0.13765400
Н	2.00626600	-2.14294600	0.12259600
Ν	-1.99431000	-0.00172800	0.00142100
С	-2.77115000	1.23042300	0.12567100
Н	-3.75607000	0.96989800	0.51086300
Н	-2.28825900	1.92055700	0.81528200
Н	-2.88053000	1.69687400	-0.85936800
С	-2.76688500	-1.23647200	-0.12301800
Н	-3.75217900	-0.97945500	-0.50964800
Н	-2.28078900	-1.92540700	-0.81155600
Н	-2.87597500	-1.70268600	0.86217600

С	3.67354500	-0.00201500	0.00478900	
Н	4.08120500	0.98297300	-0.22944800	
Н	4.03543800	-0.30043300	0.99629300	
Н	4.06162400	-0.73390900	-0.71038700	
3a+	-conformation 1 scrf=(s	md,solvent=	nitromethane	;)
С	0.08631700	-1.22703000	0.06120400	
С	-0.64814200	0.00063600	0.00081800	
С	0.08049400	1.22967400	-0.06212900	
С	1.45570000	1.21583900	-0.07137300	
С	2.17966400	0.00751100	-0.00750800	
С	1.45874200	-1.20667800	0.06159300	
Н	-0.43399800	-2.17386700	0.13792600	
Н	-0.44359200	2.17457900	-0.13729600	
Н	1.99732000	2.15459300	-0.13765400	
Н	2.00626600	-2.14294600	0.12259600	
Ν	-1.99431000	-0.00172800	0.00142100	
С	-2.77115000	1.23042300	0.12567100	
Н	-3.75607000	0.96989800	0.51086300	
Н	-2.28825900	1.92055700	0.81528200	
Н	-2.88053000	1.69687400	-0.85936800	
С	-2.76688500	-1.23647200	-0.12301800	
Н	-3.75217900	-0.97945500	-0.50964800	
Н	-2.28078900	-1.92540700	-0.81155600	
Н	-2.87597500	-1.70268600	0.86217600	
С	3.67354500	-0.00201500	0.00478900	
Η	4.08120500	0.98297300	-0.22944800	
Η	4.03543800	-0.30043300	0.99629300	
Н	4.06162400	-0.73390900	-0.71038700	

1a-H⁺-conformation 1 scrf=(smd,solvent=nitromethane)

С	-0.33099300	-0.74057000	-0.10010600
С	-1.75973600	-0.54248200	-0.10201300
С	-2.27795000	0.71348100	0.26515200
С	-1.29798000	1.77139100	0.69519200
С	0.00933900	1.64816900	-0.06773300
Н	-2.17411300	-2.57108600	-0.70943600
С	-2.60431600	-1.61036000	-0.43972100
С	-3.65693400	0.88644000	0.28001900
Н	-1.70543300	2.77100600	0.52738900
Н	0.78078900	2.27993300	0.36954300
С	-4.49918700	-0.17049600	-0.07527500

С	-3.97965200	-1.41733100	-0.43447900
Н	-4.07535200	1.84656900	0.56842800
Н	-5.57448900	-0.01901300	-0.06812100
Н	-4.64564500	-2.23017700	-0.70349300
Н	0.07565100	-1.74642800	-0.17845000
Н	-1.10937900	1.66689700	1.77132400
Н	-0.11644300	1.90782300	-1.12454900
Ν	0.50908000	0.24608300	-0.02870000
С	1.92925200	0.01694400	-0.01180300
С	2.75573200	0.83816400	-0.77840000
С	2.44895200	-1.01613300	0.76635500
С	4.12782700	0.60077200	-0.77658300
Н	2.33481300	1.63721900	-1.38043700
С	3.82336200	-1.24271800	0.75541500
Н	1.79463600	-1.61815200	1.38951000
С	4.66306700	-0.43827000	-0.01444200
Н	4.77683900	1.22872400	-1.37831300
Н	4.23614800	-2.04144200	1.36333800
Н	5.73371700	-0.61646300	-0.01529500

1a-H⁺-conformation 2 scrf=(smd,solvent=nitromethane)

С	-0.32803200	-0.68932700	-0.29340900
С	-1.75759700	-0.52294200	-0.18071500
С	-2.28040000	0.76430900	0.04619400
С	-1.30927800	1.91323700	0.09581600
С	0.01100100	1.48125500	0.70723700
Н	-2.16182200	-2.61485500	-0.51756900
С	-2.59648500	-1.63658800	-0.33101700
С	-3.65939800	0.91513500	0.13807400
Н	-1.14037400	2.28215800	-0.92412100
Н	-0.08790600	1.25487500	1.77534200
С	-4.49571900	-0.19694600	0.01231400
С	-3.97114600	-1.47117800	-0.22228500
Н	-4.08265700	1.90154500	0.30510900
Н	-5.57078300	-0.06601500	0.09328000
Н	-4.63398300	-2.32404300	-0.32237600
Н	0.08368300	-1.61363900	-0.69368300
Н	-1.71432700	2.74040800	0.68339300
Н	0.77799900	2.24301800	0.57953500
Ν	0.50739700	0.23112800	0.07303600
С	1.93030500	0.00896000	0.02436500
С	2.74017400	0.95235300	-0.60593700
С	2.46048300	-1.13921600	0.60831800

4.11256000	0.72534000	-0.66272100
2.30195400	1.83573000	-1.06091100
3.83637600	-1.35194500	0.54471900
1.80829900	-1.84435000	1.11565600
4.66079200	-0.42341700	-0.08933000
4.75309000	1.44639900	-1.16034000
4.26118900	-2.24073600	1.00004000
5.73204400	-0.59256500	-0.13433600
	4.11256000 2.30195400 3.83637600 1.80829900 4.66079200 4.75309000 4.26118900 5.73204400	4.112560000.725340002.301954001.835730003.83637600-1.351945001.80829900-1.844350004.66079200-0.423417004.753090001.446399004.26118900-2.240736005.73204400-0.59256500

3-H⁺-conformation 1 scrf=(smd,solvent=nitromethane)

С	0.00373900	-1.14770600	-0.32780500
С	-0.65582200	0.04471800	-0.03876800
С	0.04614200	1.20381900	0.27885700
С	1.43739100	1.16705300	0.28933700
С	2.13195000	-0.01101400	-0.00508800
С	1.39461600	-1.16121000	-0.31488300
Н	-0.55006200	-2.04499800	-0.58353700
Н	-0.48688700	2.11502600	0.53297900
Н	1.98994300	2.06826200	0.53981500
Н	1.91775000	-2.08319600	-0.55337100
Ν	-2.10210800	0.08392600	-0.05791100
С	-2.73119900	1.03648800	-0.63411300
Н	-3.81518700	1.05974200	-0.58534000
Н	-2.17346700	1.80203000	-1.16451000
С	-2.81380700	-1.00025900	0.64403400
Н	-3.87751000	-0.77194600	0.65571500
Н	-2.63587600	-1.93658900	0.11449800
Н	-2.41609600	-1.06438100	1.65720300
С	3.63526700	-0.05308400	0.04220600
Н	3.97605000	-0.41018400	1.02040800
Н	4.03422800	-0.73410700	-0.71406200
Н	4.06220700	0.94003000	-0.11708500

Table 7 Entry 1 RB3LYP/6-31+G(d)

С	-1.94550100	-1.19970400	0.01703100
С	-0.55159200	-1.20879200	-0.03194200
С	0.18362200	0.00000600	-0.07227600
С	-0.55159800	1.20879900	-0.03195500
С	-1.94550800	1.19970200	0.01701500
С	-2.66095000	-0.00000200	0.03906000
Н	-2.47456000	-2.14973700	0.04330200
Н	-0.03928800	-2.16370200	-0.04088700

Н	-0.03930400	2.16371300	-0.04093200
Н	-2.47457200	2.14973300	0.04326800
Н	-3.74650700	-0.00000500	0.07961800
Ν	1.57536100	0.00000200	-0.16251300
С	2.29717900	-1.24218500	0.06287300
Н	3.36648800	-1.06061700	-0.06602200
Н	2.13445700	-1.65533200	1.07314700
Н	2.00382400	-2.00375700	-0.66872300
С	2.29719700	1.24217900	0.06290100
Н	3.36651800	1.06056100	-0.06581200
Н	2.00397500	2.00374900	-0.66875300
Н	2.13435000	1.65536100	1.07313700

Table 7 Entry 1 RB3LYP/6-31+G(d) cationic radical

С	-0.56134700	-1.23144200	-0.07346100
С	0.17034000	0.00000000	0.00000000
С	-0.56134800	1.23144300	0.07346100
С	-1.94162400	1.21781000	0.07934000
С	-2.64514200	0.00000000	0.00000000
С	-1.94162300	-1.21781000	-0.07934000
Н	-0.03964600	-2.17624900	-0.16234200
Н	-0.03964800	2.17625000	0.16234300
Н	-2.48604900	2.15401700	0.15295100
Н	-2.48604700	-2.15401700	-0.15295100
Ν	1.53042300	0.00000000	0.00000000
С	2.31635200	1.23451600	-0.14676800
Н	3.28864900	0.97465200	-0.56774200
Н	1.82035700	1.93364100	-0.81922900
Н	2.46981300	1.70203500	0.83389000
С	2.31634800	-1.23451700	0.14676800
Н	3.28865500	-0.97465300	0.56771900
Н	1.82036300	-1.93363000	0.81924800
Н	2.46978700	-1.70205100	-0.83388700
Н	-3.73093900	0.00000000	0.00000000

Table 7 Entry 2 RB3LYP/6-31+G(d)

С	0.69716600	1.19588700	-0.10561900
С	1.44311700	0.00000600	-0.12468900
С	0.69720300	-1.19591500	-0.10582400
С	-0.69716200	-1.19594200	-0.10578900
С	-1.44311800	-0.00005000	-0.12460900
С	-0.69721200	1.19586000	-0.10558100

1.19722600	2.15655500	-0.08718400
1.19730300	-2.15656500	-0.08756400
-1.19723200	-2.15661000	-0.08750000
-1.19732200	2.15650200	-0.08711100
2.84879900	0.00003100	-0.17827700
3.54303200	-1.23135600	0.16431100
4.61821300	-1.07467600	0.05472700
3.34356800	-1.56981200	1.19649700
3.26214400	-2.03903000	-0.51859100
3.54298400	1.23138700	0.16451600
4.61817300	1.07476400	0.05491900
3.26207300	2.03916200	-0.51825800
3.34349300	1.56967000	1.19675400
-2.84879200	-0.00006000	-0.17810800
-3.54295600	1.23147400	0.16405100
-3.26256200	2.03873900	-0.51955500
-4.61818000	1.07460400	0.05526800
-3.34287600	1.57062500	1.19588100
-3.54305900	-1.23138100	0.16466200
-4.61823100	-1.07471700	0.05499900
-3.26215900	-2.03918600	-0.51807500
-3.34364700	-1.56965100	1.19691100
	1.19722600 1.19730300 -1.19723200 2.84879900 3.54303200 4.61821300 3.34356800 3.26214400 3.54298400 4.61817300 3.26207300 3.26207300 3.34349300 -2.84879200 -3.54295600 -3.54295600 -3.26256200 -4.61818000 -3.34287600 -3.54305900 -4.61823100 -3.26215900 -3.34364700	1.197226002.156555001.19730300-2.15656500-1.19723200-2.15661000-1.197322002.156502002.848799000.000031003.54303200-1.231356004.61821300-1.074676003.34356800-1.569812003.26214400-2.039030003.542984001.231387004.618173001.074764003.262073002.039162003.343493001.56967000-2.84879200-0.00006000-3.542956001.23147400-3.262562002.03873900-4.618180001.07460400-3.342876001.57062500-3.54305900-1.23138100-4.61823100-1.07471700-3.26215900-2.03918600-3.34364700-1.56965100

Table 7 Entry 2 RB3LYP/6-31+G(d) cationic radical

С	-0.68607600	-1.22041600	0.00003000
С	-1.43296700	-0.00001300	0.00003000
С	-0.68605000	1.22037300	0.00008400
С	0.68620200	1.22035800	0.00008400
С	1.43310500	-0.00004600	0.00006500
С	0.68617700	-1.22043400	0.00005500
Н	-1.19890100	-2.17338900	0.00000300
Н	-1.19885700	2.17335700	0.00013500
Н	1.19901300	2.17333300	0.00011900
Н	1.19895400	-2.17342600	0.00007900
Ν	-2.79015900	0.00000500	-0.00001700
С	-3.54200300	1.26150100	0.00001900
Н	-4.60686100	1.03900400	-0.00008800
Н	-3.31284100	1.85240800	0.89266200
Н	-3.31274900	1.85244800	-0.89257000
С	-3.54204800	-1.26146400	-0.00012600
Н	-4.60689800	-1.03892800	-0.00015700
Н	-3.31279500	-1.85239200	-0.89273100
Н	-3.31293000	-1.85240600	0.89250100

Ν	2.79028000	-0.00000800	-0.00002800
С	3.54196700	-1.26155600	0.00004100
Н	3.31279900	-1.85224400	0.89284500
Н	3.31239300	-1.85261900	-0.89236700
Н	4.60684700	-1.03929700	-0.00023200
С	3.54179500	1.26164200	-0.00014800
Н	3.31200900	1.85258800	-0.89263700
Н	3.31265900	1.85238900	0.89257400
Н	4.60670000	1.03952900	-0.00063400

Table 7 Entry 3 RB3LYP/6-31+G(d)

С	0.71569100	0.25857200	-0.01707000
С	-0.71579800	0.25829700	0.01706600
С	-1.38182900	1.49327600	0.06689700
С	-0.69480000	2.71041700	0.04288000
С	0.69374400	2.71068300	-0.04290000
С	1.38124100	1.49380500	-0.06689800
Н	-2.46603800	1.50884500	0.09437500
Н	-1.25104900	3.64387300	0.07206200
Н	2.46544500	1.50980100	-0.09434900
Ν	-1.43805400	-0.96611100	0.02502600
С	-2.82131200	-0.92118100	0.47328700
Н	-3.50771800	-0.44680200	-0.25341000
Н	-3.16783600	-1.94838600	0.63253700
Н	-2.89429800	-0.38275900	1.42304000
С	-1.27879900	-1.79999400	-1.17020500
Н	-1.83556700	-1.38859500	-2.03166000
Н	-0.22202800	-1.87518300	-1.43020700
Н	-1.66203600	-2.80576800	-0.96141300
Н	1.24963500	3.64435200	-0.07208900
Ν	1.43841000	-0.96559600	-0.02501700
С	1.27955600	-1.79944100	1.17030000
Н	1.66298900	-2.80514600	0.96151300
Н	1.83638400	-1.38785200	2.03162900
Н	0.22285000	-1.87486300	1.43047900
С	2.82163600	-0.92023200	-0.47337200
Н	3.50794400	-0.44572600	0.25332800
Н	3.16844400	-1.94733100	-0.63271500
Н	2.89440600	-0.38171700	-1.42308600

Table 7 Entry 3 RB3LYP/6-31+G(d) cationic radical

0	۲
t.	
~	· ·

0.72833100

0.28068300 -0.04070700

С	-0.72833200	0.28067800	0.04070900
С	-1.38354300	1.52987200	0.23795700
С	-0.69473700	2.71752400	0.13952400
С	0.69471700	2.71752900	-0.13952400
С	1.38353300	1.52988300	-0.23795600
Н	-2.45810200	1.55296000	0.36751600
Н	-1.22891300	3.65779400	0.23447000
Н	2.45809100	1.55297800	-0.36751500
Ν	-1.47147100	-0.86155400	-0.11077600
С	-2.88207800	-0.89329200	0.29237200
Н	-3.52739100	-0.43159000	-0.46691800
Н	-3.17814500	-1.93875800	0.40580400
Н	-3.01961000	-0.38746000	1.24942700
С	-1.11315500	-1.93457700	-1.04859100
Н	-1.88083800	-1.97880400	-1.83060300
Н	-0.14880500	-1.74246900	-1.51421500
Н	-1.08957800	-2.90226900	-0.53667400
Н	1.22888500	3.65780300	-0.23447300
Ν	1.47147900	-0.86154200	0.11078000
С	1.11316800	-1.93456900	1.04859200
Н	1.08958000	-2.90225900	0.53667000
Н	1.88085900	-1.97880400	1.83059600
Н	0.14882300	-1.74245600	1.51422600
С	2.88208400	-0.89327300	-0.29237600
Н	3.52740100	-0.43157300	0.46691200
Н	3.17815400	-1.93873800	-0.40581400
Н	3.01960800	-0.38743600	-1.24942900

Table 7 Entry 4 RB3LYP/6-31+G(d)

С	0.00000100	0.47554100	0.00000000
С	-1.23301600	-0.20767400	0.06993100
С	-1.21931000	-1.62102200	0.05399900
С	0.00000000	-2.29217600	-0.00000300
С	1.21931100	-1.62102200	-0.05400500
С	1.23301700	-0.20767400	-0.06993500
Н	0.00000200	1.55472300	0.00000300
Н	-2.13740800	-2.19353000	0.09174200
Н	0.00000000	-3.38011500	-0.00000400
Ν	-2.43431800	0.50018400	0.17247800
С	-3.68548200	-0.21439400	-0.02801200
Н	-4.51756600	0.47924100	0.11311300
Н	-3.77005700	-0.65950900	-1.03442700
Н	-3.79910000	-1.01615600	0.70993300

С	-2.44101100	1.92747400	-0.10404300
Н	-3.45601800	2.31019600	0.02483400
Н	-1.79739400	2.46730600	0.60022900
Н	-2.10668600	2.16745600	-1.12835400
Н	2.13740800	-2.19353100	-0.09174900
Ν	2.43431900	0.50018400	-0.17248200
С	3.68548200	-0.21439200	0.02802700
Н	4.51756700	0.47924000	-0.11310100
Н	3.77005000	-0.65949400	1.03445000
Н	3.79910400	-1.01616400	-0.70990500
С	2.44100800	1.92747400	0.10403900
Н	2.10668100	2.16745700	1.12834900
Н	3.45601400	2.31019900	-0.02483800
Н	1.79739000	2.46730200	-0.60023600

Table 7 Entry 4 RB3LYP/6-31+G(d) cationic radical

С	0.72833100	0.28068300	-0.04070700
С	-0.72833200	0.28067800	0.04070900
С	-1.38354300	1.52987200	0.23795700
С	-0.69473700	2.71752400	0.13952400
С	0.69471700	2.71752900	-0.13952400
С	1.38353300	1.52988300	-0.23795600
Н	-2.45810200	1.55296000	0.36751600
Н	-1.22891300	3.65779400	0.23447000
н	2.45809100	1.55297800	-0.36751500
Ν	-1.47147100	-0.86155400	-0.11077600
С	-2.88207800	-0.89329200	0.29237200
н	-3.52739100	-0.43159000	-0.46691800
Н	-3.17814500	-1.93875800	0.40580400
Н	-3.01961000	-0.38746000	1.24942700
С	-1.11315500	-1.93457700	-1.04859100
Н	-1.88083800	-1.97880400	-1.83060300
Н	-0.14880500	-1.74246900	-1.51421500
Н	-1.08957800	-2.90226900	-0.53667400
Н	1.22888500	3.65780300	-0.23447300
Ν	1.47147900	-0.86154200	0.11078000
С	1.11316800	-1.93456900	1.04859200
Н	1.08958000	-2.90225900	0.53667000
Н	1.88085900	-1.97880400	1.83059600
Н	0.14882300	-1.74245600	1.51422600
С	2.88208400	-0.89327300	-0.29237600
Н	3.52740100	-0.43157300	0.46691200
Н	3.17815400	-1.93873800	-0.40581400

H

3.01960800 -0.38743600

-1.24942900

Table 7 Entry 5 RB3LYP/6-31+G(d)

С	-0.22661700	-1.10596300	-0.06662900
С	-1.07560800	0.01737400	-0.10312400
С	-0.45168100	1.28775300	-0.06546100
С	0.93193500	1.41639100	-0.02349300
С	1.75997800	0.28768800	-0.00630100
С	1.16712900	-0.97648600	-0.02532500
Н	-0.63756200	-2.10862000	-0.07350700
Н	-1.04621300	2.19372900	-0.07280400
Н	1.38981400	2.40125600	0.00245700
Н	1.76839300	-1.87913400	-0.00191100
Ν	-2.47052800	-0.11181500	-0.19552000
С	-3.29157200	1.04346500	0.13323300
Н	-4.34366300	0.77955000	0.00164400
Н	-3.14752100	1.39542500	1.17036100
Н	-3.07970000	1.87819800	-0.54346900
С	-3.05646100	-1.41338100	0.08201000
Н	-4.13974700	-1.35000700	-0.04579900
Н	-2.68821400	-2.16424600	-0.62570500
Н	-2.84614000	-1.77279800	1.10539600
С	3.98699500	-0.59021100	0.06416700
Н	3.87437400	-1.21016900	-0.83624500
Н	4.99793000	-0.17891300	0.09553000
Н	3.81929100	-1.21105900	0.95537100
0	3.11350800	0.52621500	0.03785500

Table 7 Entry 5 RB3LYP/6-31+G(d) cationic radical

С	-0.44795300	1.31078800	-0.00001000
С	-1.06930800	0.01642600	-0.00000200
С	-0.21594100	-1.13507800	0.00000600
С	1.15524700	-1.00985900	0.00000700
С	1.74886200	0.27838900	0.00000100
С	0.91616300	1.43303600	-0.00000800
Н	-1.05188300	2.20932600	-0.00001500
Н	-0.64243100	-2.13036500	0.00000900
Н	1.76911100	-1.90294200	0.00001300
Н	1.39160200	2.40856600	-0.00001200
Ν	-2.41993100	-0.11325300	-0.00000300
С	-3.05433800	-1.44068100	0.00001800
Н	-4.13547300	-1.31688400	0.00004100

Н	-2.76802000	-2.00425900	-0.89393800
Н	-2.76798200	-2.00424900	0.89396800
С	-3.29146700	1.07226000	-0.00002500
Н	-4.33040600	0.74874800	-0.00004600
Н	-3.11429500	1.67912500	0.89379100
Н	-3.11425800	1.67911800	-0.89383900
0	3.05389900	0.51476600	0.00000200
С	4.00952700	-0.56808000	0.00001200
Н	4.98406100	-0.08287900	0.00001200
Н	3.89177800	-1.17592800	0.90192000
Н	3.89178300	-1.17593800	-0.90189000

Table 7 Entry 6 RB3LYP/6-31+G(d)

С	-0.57855600	-1.21599600	0.00000100
С	-1.31586500	0.00000000	0.00000300
С	-0.57855600	1.21599600	0.00000100
С	0.80718700	1.21340000	-0.00000200
С	1.50246600	0.00000000	-0.00000400
С	0.80718700	-1.21340000	-0.00000200
Н	-1.09295400	-2.16908200	0.00000300
Н	-1.09295400	2.16908200	0.00000200
Н	1.36076800	2.14519200	-0.00000300
Н	1.36076800	-2.14519200	-0.00000300
Ν	-2.68946300	0.00000000	0.00000600
С	-3.42373800	1.25818800	0.00000800
Н	-4.49388500	1.04699600	0.00001100
Н	-3.19643100	1.85988400	0.89074300
Н	-3.19643500	1.85988500	-0.89072700
С	-3.42373800	-1.25818800	0.00000900
Н	-4.49388500	-1.04699600	0.00001100
Н	-3.19643500	-1.85988600	-0.89072600
Н	-3.19643100	-1.85988400	0.89074400
Ν	2.95464500	0.00000000	-0.00000700
0	3.53770500	-1.09161300	-0.00000800
0	3.53770500	1.09161300	-0.00000900

Table 7 Entry 6 RB3LYP/6-31+G(d) cationic radical

С	-0.56134700	-1.23144200	-0.07346100
С	0.17034000	0.00000000	0.00000000
С	-0.56134800	1.23144300	0.07346100
С	-1.94162400	1.21781000	0.07934000
С	-2.64514200	0.00000000	0.00000000

С	-1.94162300	-1.21781000	-0.07934000
Н	-0.03964600	-2.17624900	-0.16234200
Н	-0.03964800	2.17625000	0.16234300
Н	-2.48604900	2.15401700	0.15295100
Н	-2.48604700	-2.15401700	-0.15295100
Ν	1.53042300	0.00000000	0.00000000
С	2.31635200	1.23451600	-0.14676800
Н	3.28864900	0.97465200	-0.56774200
Н	1.82035700	1.93364100	-0.81922900
Н	2.46981300	1.70203500	0.83389000
С	2.31634800	-1.23451700	0.14676800
Н	3.28865500	-0.97465300	0.56771900
Н	1.82036300	-1.93363000	0.81924800
Н	2.46978700	-1.70205100	-0.83388700
Н	-3.73093900	0.00000000	0.00000000

Table 7 Entry 7 RB3LYP/6-31+G(d)

С	1.46944900	1.19271900	0.00412600
С	0.07478000	1.20437400	-0.04283200
С	-0.66350800	0.00055800	-0.08639400
С	0.07679100	-1.20373400	-0.04690800
С	1.47003000	-1.19124300	-0.00011100
С	2.20477400	0.00175500	0.02045700
Н	1.99465400	2.14595300	0.03599300
Н	-0.43215000	2.16232500	-0.04338500
Н	-0.42979000	-2.16189900	-0.05111900
Н	1.99602100	-2.14435900	0.02822100
Ν	-2.05846900	-0.00098000	-0.17716000
С	-2.77571500	1.23840300	0.07606400
Н	-3.84570400	1.06385300	-0.05867900
Н	-2.61259900	1.62969200	1.09553600
Н	-2.47854800	2.01389900	-0.63870200
С	-2.77444000	-1.23974100	0.08343800
Н	-3.84487700	-1.06602400	-0.04875700
Н	-2.47964100	-2.01842600	-0.62881500
Н	-2.60818600	-1.62639700	1.10412000
С	3.71659000	-0.00083500	0.04303900
Н	4.13661900	-0.17700000	-0.95728000
Н	4.11185300	0.95802300	0.39734000
Н	4.10912200	-0.78631500	0.70037300

Table 7 Entry 7 RB3LYP/6-31+G(d) cationic radical

С	-0.08851700	1.22737600	0.06198800
С	0.64964700	-0.00028600	-0.00196400
С	-0.08867600	-1.22741700	-0.07309600
С	-1.46554400	-1.21175800	-0.08441800
С	-2.19753200	0.00040300	-0.01240800
С	-1.46530600	1.21253200	0.06125700
Н	0.42857900	2.17551300	0.14364200
Н	0.42846700	-2.17539200	-0.15645800
Н	-2.00423000	-2.15221000	-0.15884400
Н	-2.00413700	2.15376700	0.12485700
Ν	2.00742000	-0.00031800	0.00277600
С	2.78970000	-1.23800700	0.13997200
Н	3.76839500	-0.98385600	0.54888600
Н	2.29949800	-1.93341200	0.82117400
Н	2.92822100	-1.71074600	-0.84027000
С	2.79002300	1.23789700	-0.12858100
Н	3.77579100	0.98310100	-0.51951700
Н	2.30993100	1.92838000	-0.82204300
Н	2.91132100	1.71683800	0.85091400
С	-3.69465400	-0.00022300	0.01464700
Н	-4.11007000	-0.86700200	-0.50814800
Н	-4.04991700	-0.04897600	1.05544900
Н	-4.10863400	0.91312400	-0.42346100

Table 7 Entry 8 RB3LYP/6-31+G(d) Conformation 1

С	-0.32978700	-0.86528000	0.38241600
С	-1.79005100	-0.58411600	0.09474100
С	-2.31038200	0.70694000	0.26120700
С	-1.34645200	1.79682900	0.65221300
С	-0.00243500	1.60663400	-0.05798500
Н	-2.23484000	-2.62717900	-0.43461800
Н	0.00718400	-1.67762000	-0.27673500
С	-2.64058600	-1.62694300	-0.29408700
С	-3.67301500	0.93747100	0.03556300
Н	-1.75096800	2.78401800	0.39898100
Н	0.69996400	2.36098800	0.31051600
С	-4.52016900	-0.10697800	-0.33961200
С	-4.00089000	-1.39468400	-0.50551400
Н	-4.07009600	1.94391100	0.15348500
Н	-5.57637200	0.08391300	-0.51172800
Н	-4.64999600	-2.21224500	-0.80841500
Н	-0.24402800	-1.25135000	1.41325300
Н	-1.17746100	1.78850900	1.73939600

Н	-0.13360100	1.77907900	-1.14106700
Ν	0.55898200	0.28877300	0.21430500
С	1.92376800	0.05987900	0.05907200
С	2.78380100	1.03419300	-0.50231100
С	2.50753000	-1.16462500	0.46532100
С	4.15193400	0.79460900	-0.63127400
Н	2.38610000	1.97561300	-0.86358400
С	3.87685800	-1.38891300	0.32522000
Н	1.89742600	-1.93872900	0.91685400
С	4.71709600	-0.41523200	-0.22071500
Н	4.77893700	1.56659700	-1.07184500
Н	4.28857900	-2.33965600	0.65655200
Н	5.78299400	-0.59597500	-0.32670300

Table 7 Entry 8 RB3LYP/6-31+G(d) cationic radical Conformation 1

С	-0.36735800	-0.76951300	0.78818300
С	-1.76545900	-0.58447400	0.24519300
С	-2.31524200	0.70376600	0.27549500
С	-1.40125100	1.79656000	0.76478700
С	-0.01728400	1.65434200	0.11952600
Н	-2.08095700	-2.66348800	-0.26007200
Н	0.02824700	-1.73691600	0.48379400
С	-2.51200500	-1.66532100	-0.23158700
С	-3.62256600	0.90682900	-0.17180700
Н	-1.78495200	2.79006600	0.51224400
Н	0.68429900	2.37793800	0.54277800
С	-4.37826300	-0.17546000	-0.63218400
С	-3.82494500	-1.45881600	-0.66344300
Н	-4.05150400	1.90588500	-0.16019400
Н	-5.39674200	-0.01530400	-0.97382700
Н	-4.41138400	-2.29695700	-1.02791500
Н	-0.36044300	-0.72771300	1.88888900
Н	-1.29907900	1.76821300	1.85954200
Н	-0.09628000	1.83365300	-0.96047800
Ν	0.55741700	0.29710500	0.31199200
С	1.87940700	0.05750200	0.07987600
С	2.68527900	1.03270400	-0.59446700
С	2.50131200	-1.16099500	0.50809300
С	4.02368700	0.78787600	-0.83196900
Н	2.24448900	1.95356800	-0.95453100
С	3.84516000	-1.37743900	0.27107100
Н	1.93928200	-1.90428600	1.05866400
С	4.61750200	-0.41394800	-0.40316500

Н	4.61711600	1.52747800	-1.36044100
Н	4.30692500	-2.29696000	0.61700700
Н	5.67121900	-0.59658800	-0.59101800

Table 7 Entry 8 RB3LYP/6-31+G(d) Conformation 2

С	-0.33259500	-0.90219600	0.22181900
С	-1.80379200	-0.57096900	0.03603200
С	-2.26452000	0.75379800	-0.00302600
С	-1.28021700	1.89785200	0.11457500
С	0.03685400	1.43756600	0.73701400
Н	-2.36321400	-2.65138700	-0.04411400
Н	-0.04756100	-1.67078400	-0.50500700
С	-2.72343400	-1.62418500	-0.07533900
С	-3.63844300	0.99525400	-0.15480200
Н	-1.07587400	2.31630900	-0.88133800
Н	-0.11331400	1.20387400	1.80838400
С	-4.54781800	-0.05516800	-0.26875900
С	-4.08649600	-1.37556500	-0.22807300
Н	-3.99452300	2.02372400	-0.18102400
Н	-5.60853500	0.15226200	-0.38525200
Н	-4.78430700	-2.20434100	-0.31629600
Н	-0.19359500	-1.34806500	1.22815000
Н	-1.71073900	2.70713700	0.71915300
Н	0.77837700	2.23472700	0.68586500
Ν	0.53567200	0.25201900	0.03216200
С	1.92745300	0.02697300	-0.01131300
С	2.80336600	1.07833300	-0.36244200
С	2.49377300	-1.23990200	0.23538000
С	4.17729800	0.87125000	-0.44638800
Н	2.40187800	2.05810200	-0.60294500
С	3.87457400	-1.44020900	0.13590100
Н	1.86652700	-2.07767800	0.51779000
С	4.72967700	-0.39107600	-0.19839700
Н	4.82114200	1.70228500	-0.72495800
Н	4.27802000	-2.43058100	0.33413700
Н	5.80194000	-0.55025300	-0.27077000

Table 7 Entry 1 RB3LYP/6-31+G(d) cationic radical Conformation 2

С	-0.39196600	-0.95027200	0.73617200
С	-1.77912900	-0.56573700	0.22940200
С	-2.12171000	0.75360400	-0.09507800
С	-1.10520600	1.86387800	0.05533500

С	0.00258000	1.45091300	1.03164100
Н	-2.45624800	-2.61517700	0.35087400
Н	-0.02482000	-1.80105900	0.16435200
С	-2.72385500	-1.59216600	0.09381100
С	-3.41710900	1.02407900	-0.56054100
Н	-0.65993200	2.12724600	-0.91407500
Н	-0.42489500	1.29196600	2.03019500
С	-4.35519000	0.00317300	-0.69904400
С	-4.00843600	-1.31081700	-0.36791200
Н	-3.68865500	2.04651500	-0.81283500
Н	-5.35458000	0.23068100	-1.05803100
Н	-4.73498900	-2.11182300	-0.46670100
Н	-0.43723900	-1.24691500	1.79550300
Н	-1.57737200	2.77357100	0.44368800
Н	0.78526100	2.19956000	1.12423300
Ν	0.57514200	0.15583600	0.62681600
С	1.86431700	-0.01263900	0.21216100
С	2.67098200	1.11227900	-0.15991600
С	2.44841000	-1.31949300	0.14287200
С	3.97342100	0.92780600	-0.58235400
Н	2.25745600	2.11260600	-0.16009700
С	3.75833800	-1.47713700	-0.26681300
Н	1.88874600	-2.19077600	0.45808900
С	4.53206400	-0.36199100	-0.63724200
Н	4.56414400	1.78798000	-0.88161900
Н	4.19344600	-2.47137100	-0.29204500
Н	5.55860700	-0.49673800	-0.96421100

Table 7 Entry 8 RB3LYP/6-31+G(d) Conformation 3

0.47483000	0.12634800	1.62554000
1.62687700	-0.14339900	0.66431300
1.77761000	0.64441800	-0.49108600
0.75495100	1.71442800	-0.83388800
-0.13079000	2.07735600	0.36935000
2.44935600	-1.74428300	1.84945100
0.85244500	0.72353400	2.47005700
2.57093400	-1.13823200	0.95251600
2.87529800	0.41080500	-1.33264800
1.26020500	2.61384200	-1.21144400
-0.96364000	2.70978400	0.05478600
3.81095600	-0.58247700	-1.04235200
3.65800900	-1.36379200	0.10769200
2.99448700	1.01920400	-2.22768900
	0.47483000 1.62687700 1.77761000 0.75495100 -0.13079000 2.44935600 0.85244500 2.87529800 1.26020500 -0.96364000 3.81095600 3.65800900 2.99448700	0.474830000.126348001.62687700-0.143399001.777610000.644418000.754951001.71442800-0.130790002.077356002.44935600-1.744283000.852445000.723534002.57093400-1.138232002.875298000.410805001.260205002.61384200-0.963640002.709784003.81095600-0.582477003.65800900-1.363792002.994487001.01920400

Н	4.65458100	-0.74638800	-1.70813600
Н	4.37852500	-2.14339600	0.34216200
Н	0.09925900	-0.80442000	2.05984300
Н	0.11135600	1.35388100	-1.64979900
Н	0.44666900	2.64754700	1.10875700
Ν	-0.63497300	0.87189400	1.04117400
С	-1.68658300	0.16492800	0.40985100
С	-2.87360000	0.85234100	0.07771800
С	-1.62777700	-1.21466600	0.13395900
С	-3.94872800	0.18795900	-0.50751100
Н	-2.96303200	1.90936200	0.31144500
С	-2.71900700	-1.87723500	-0.43709300
Н	-0.72375500	-1.77743600	0.34022300
С	-3.88473300	-1.18600400	-0.76773100
Н	-4.85166900	0.74593200	-0.74460800
Н	-2.64174400	-2.94328900	-0.63814000
Н	-4.72773000	-1.70380800	-1.21689600

References

- [1] Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 3672.
- [2] O. Baslé, C.-J. Li, Green Chem. 2007, 9, 1047.
- [3] X.-Z., Shu, X.-F. Xia, Y.-F., Yang, K.-G., Ji, X.-Y. Liu, Y.-M., Liang , J. Org. Chem. 2009, 74, 7464–7469.
- [4] Y.Shen, M. Li, S. Wang, T. Zhan, Z. Tan, C.-C. Guo, Chem. Commun., 2009, 953–955
- [5] M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny, D. C. Fabry, *Chem. Commun.*, 2011, 47, 2360-2362.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.2, Gaussian, Inc., Wallingford CT, 2009.
- [7] Y. Zhao, and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-41.
- [8] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- [9] Y. Fu, L. Liu, H.-Z. Yu, Y.-M. Wang and Q.-X. Guo, J. Am. Chem. Soc., 2005, 127, 7227-7234.
- [10] S. Trasatti, Pure Appl. Chem. 1986, 58, 955.