SUPPLEMENTARY MATERIAL

Hybrid Photoactive Materials from Municipal Sewage Sludge for the Photocatalytic Degradation of Methylene Blue

Juan Matos,^{*a} Maibelin Rosales,^a Andreína García,^a Cesar Nieto-Delgado,^b José R. Rangel-Mendez^b

Fig. S1. Emission spectra of lamps. A) Mercury (L_{Hg}). B) Metal halide (L_{MH}).

Table S1. Properties of Hg lamp (L _{Hf}) UV and metal halide lamp (L_{MH})
--	---

Lamp	Total radiation $(W m^{-2})$	UV radiation $(W m^{-2})$	Visible radiation $(W m^{-2})$	Total flux (photons $\text{cm}^{-2} \text{ s}^{-1}$)
L _{Hg}	445.5	82,9	362.6	1.23x10 ¹⁷
L _{MH}	522.7	70.2	452.5	$1.44 \mathrm{x} 10^{17}$

	Wavelength		Concentration (g/Kg of dry weight)	
Element	(nm)	\mathbf{R}^2	Sample ^a	Ashes ^b
Ag	328.068	0.999	0.013	0.072
Al	396.152	0.999	24.91	21.78
В	249.678	0.999	0.900	0.661
Ba	493.408	0.999	0.406	0.318
Ca	422.67	0.999	79.13	65.04
Cr	267.716	0.999	0.304	0.274
Cu	327.395	0.999	0.593	0.189
Fe	248.33	0.999	83.34	89.55
K	766.49	0.997	19.94	8.89
Ga	417.204	0.999	0.040	ND ^c
La	333.749	0.999	0.105	0.090
Li	610.365	0.999	0.205	0.027
Mg	280.270	0.999	5.37	4.95
Mn	259.372	0.999	0.469	0.386
Мо	202.032	0.999	0.072	0.060
Na	589.592	0.999	33.39	0.471
Ni	231.604	0.999	0.044	ND ^c
Р	213.618	0.999	28.34	31.14
Pb	182.143	0.999	0.054	ND ^c
Sc	361.383	0.999	0.021	0.037
Si	288.158	0.998	45.86	ND ^c
Sr	421.552	0.999	0.189	ND ^c
Zn	213.857	0.999	0.538	1.18

Table S2. Inorganic composition of carbon-based material from sewage sludge

^aConcentration in dry sample. ^bConcentration in ashes. ^cND: not detected

Fig. S2. Adsorption isotherm of TiO₂ P25, AC-RM and AC-RM-CO₂

Fig. S3. Adsorption isotherm of TiO₂-AC-RM and TiO₂-AC-RM-CO₂

Fig. S4. Kinetics of MB adsorption in the dark.

Fig. S5. Kinetic of disappearance of MB in absence of TiO_2 under Hg lamp (A). Linear regression estimated after 60min adsorption in the dark and 60min irradiation (B).

Fig. S6. Kinetic of disappearance of MB in absence of TiO_2 under MH lamp (A). Linear regression estimated after 60min adsorption in the dark and 60min irradiation (B).