Supporting Information for

Polymer precursors from catalytic reactions of natural oils

Marc R. L. Furst,^{*a*} Ronan Le Goff,^{*a*} Dorothee Quinzler,^{*b*} Stefan Mecking,^{*b**} Catherine H. Botting, ^{*a*} and David J. Cole-Hamilton^{*a**}

NMR and other spectra for the compounds formed during the study are shown below, together with GC analysis of the minor products obtained from the carbonylation of sunflower and olive oils.:

Time-->

Table 1 Tentative assignment of GCMS peaks based on observed highest mass peaks and comparisons with library spectra where possible.

	Highest	Assignment	% Fit
	mass		
	peak		
a: methyl hexadecanoate	270	$[M]^+$	67
b: methyl octadecanoate	298	[M] ⁺	98
c, c',c'':	294		
d:	281		
e:	326		
f.	324*		
مخ	322		
g`.	324*		
h:	324*		
i: 1,2-bis((di- <i>tert</i> -butylphosphino)methyl)benzene	337	$[M - Bu^t]^+$	
j: isomer of dimethyl nonadecenedioate	354	$[M]^+$	
k: dimethyl nonadecanedioate	356	$[M]^+$	91
1:	323		
m:	371		
n:	382		
n'	354		
p:	356		
q: 1,2-bis((di- <i>tert</i> -butylphosphoryl)methyl)benzene	426	[M] ⁺	
Peaks with mass 324 are probably from branched iso	mers of C1	9 dimethyl esters, ł	but the spectra

different isomers are so we have not

provided assignments.

~--Z/W

^{~--}z/m

~-->/W

<-->∠/Ш

<---Z/W

4

<--×/₩

<--->/w

Ч

⁻⁻⁻z/m

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2011

220 240

140 160

0 7

_⊢0 0

~--×/~

 N 0-0-

(V) (V

ທ 4

N 80 N 80

~-->/W

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2011

p P

N/N/N/

1,2-bis((di-tert-butylphosphoryl)methyl)benzene

Time

Characterisation of reduction products

1,19-nonadecanediol:

First method:

¹H NMR spectrum

¹³C NMR spectrum

	62.5	30.61	
FM ₂₁₁ THFd ₈			
		· · · ·	

Second method: ¹H NMR spectrum

¹³C NMR spectrum

Oligoesters prepared from the hydrogenation of 1,19-nonadecadianoic acid ¹H NMR spectrum of purified product (the crude product also contained diol)

Integration of the resonances between 2 and 4.5 ppm gives an average chain length of 3 monomer units terminated mainly by -CH₂OH groups. The small resonance at 0.8 ppm is from methyl endgroups which can arise from decarbonylation as shown in Scheme 2 of the main paper and/or from dehydration of an alcohol end group followed by hydrogenation of the terminal alkene.

IR Spectrum

Oligoesters used for hydrogenation in the presence of water

A sample of oligoesterwas prepared by the first method described for the hydrogenation of dimethyl 1,19-nonadecanedioate in the presence of 10 % water, but using an impure sample of triphos. This preparation led to oligoesters, but was not reproducible when using other batches of triphos.

The average chain length is calculated as 3 units and the main end groups are -CH₂OH (signal

- at 3.64 ppm. Some -CO₂Me end groups are also observed (small signals 3.5 (*MeO*) and
- at 2.3 (CH_2CO_2Me) ppm next to the in chain $CH_2C(O)$ signal at 2.28 ppm. The signal at 4.05 ppm is from the in chain CH_2O

MALDI-TOF MS

3 4700 Reflector Spec #1 MC[BP = 892.9, 880] 892.89 4 189.15 2 100-5 879.6 644.60619.54 1485.41 80 6 % Intensity 72050.93 <mark>4</mark> 60 920.89 781.67 <u>2</u>12.04 339.25 035.69 779.63 2374.17 40 20 y 3 3260 2520 4000 1040 1780 Mass (m/z)

n=