## **Electronic supplementary information (ESI)**

## Soaking of Pine Wood Chips with Ionic Liquids for Reduced Energy Input During Grinding

Agnieszka Brandt,<sup>a,b</sup> James K. Erickson,<sup>a</sup> Jason P. Hallett,<sup>a</sup> Richard J. Murphy,<sup>b,c</sup> Antje Potthast,<sup>d</sup> Michael Ray,<sup>c</sup> Thomas Rosenau,<sup>d</sup> Michael Schrems,<sup>a,d</sup> Tom Welton<sup>a,b</sup>\*

<sup>a</sup> Department of Chemistry, Imperial College London, London, SW7 2AZ, UK

<sup>b</sup> The Porter Alliance, Imperial College London, London, SW7 2AZ, UK

<sup>c</sup> Division of Biology, Imperial College London, London, SW7 2AZ, UK

<sup>d</sup> Christian-Doppler-Laboratory "Advanced cellulose chemistry and analytics", Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria

\* To whom correspondence should be addressed, <u>t.welton@imperial.ac.uk</u>

## Synthesis of 1-butyl-3-methylimidazolium acetate

200 ml (1.52 mol) N-butylimidazole, 168 ml dimethyl carbonate (1.98 mol) and 200 ml methanol were heated in a stirred stainless steel pressure reactor (Parr Instruments) at 140°C for 24 h. The methanol was evaporated and the viscous liquid washed 3 times with 150 ml dry toluene under a nitrogen atmosphere. The washed product was dried *in vacuo* until crystals appeared. The product was dissolved in 100 ml acetonitrile at 80°C. 100 ml ethyl acetate was added and the liquid slowly cooled to room temperature. The crystals were washed twice with 200 ml ethyl acetate. The off-white solid was dried under vacuum and mild heating. The <sup>1</sup>H-NMR spectrum showed that the product was a mixture of 1-butyl-3-methylimidazolium carboxylates (carboxylated at position 2,4, and 5 of the ring). 90.0 g (494 mmol) of 1-butyl-3-methylimidazolium carboxylate mixture was transferred into a Schlenk flask in the glove box. 100 ml methanol was added under a nitrogen atmosphere. 29.7 g acetic acid (494 mmol) was added drop wise. The mixture was stirred at room temperature overnight to allow the evolution of carbon dioxide go to completion. The liquid was dried *in vacuo* at 60°C, yielding a brown oily liquid with a water content of 6.1 wt% or 34 mol%.

 $\delta_{H}$  (400 MHz; DMSO-d<sub>6</sub>) 10.2 (1H, s, CH-2), 7.96 (1H, s, CH-5), 7.83 (1H, s, CH-4), 4.21 (2H, t, N-CH<sub>2</sub>-), 3.89 (3H, s, N-CH<sub>3</sub>), 1.75 (2H, m, N-CH<sub>2</sub>-CH<sub>2</sub>-), 1.61 (3H, s, H<sub>3</sub>C-CO<sub>2</sub>), 1.22 (2H, m, N-(CH<sub>2</sub>)<sub>2</sub>-CH<sub>2</sub>-) and 0.86 (3H, t, N-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub>).

## **Enzymatic Saccharification**

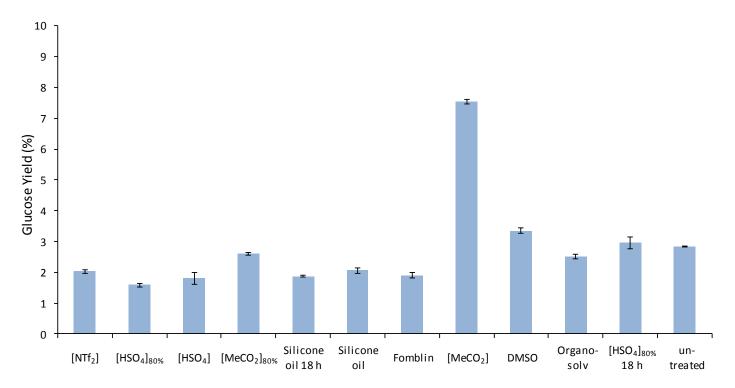



Figure 1: Glucose yields (percentage of sample dried-weight) from enzymatically treated ground wood chips treated with various liquids. Particle size range:  $180 - 850 \mu m$ , treatment conditions:  $90^{\circ}$ C, 1 h unless otherwise stated. Cation of all ionic liquids is [C<sub>4</sub>C<sub>1</sub>im].

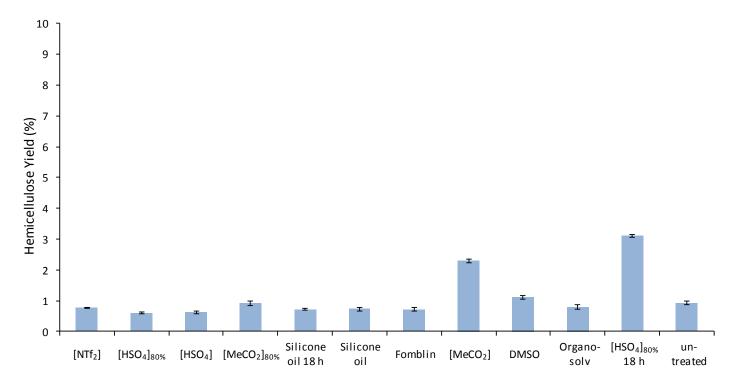



Figure 2: Hemicellulose yields (percentage of sample dried-weight) from enzymatically treated ground wood chips treated with various liquids. Particle size range:  $180 - 850 \mu m$ , treatment conditions:  $90^{\circ}$ C, 1 h unless otherwise stated. Cation of all ionic liquids is [C<sub>4</sub>C<sub>1</sub>im].

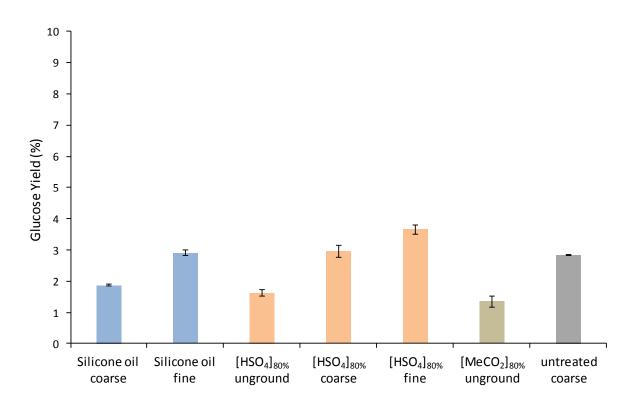



Figure 3: Influence of particle size on glucose yields (percentage of sample dried-weight) from enzymatically treated ground wood chips treated with various liquids. Coarse particle size:  $180 - 850 \mu m$ , fine:  $53 - 150 \mu m$ , treatment conditions:  $90^{\circ}$ C, 18 h. Cation of all ionic liquids is [C<sub>4</sub>C<sub>1</sub>im].

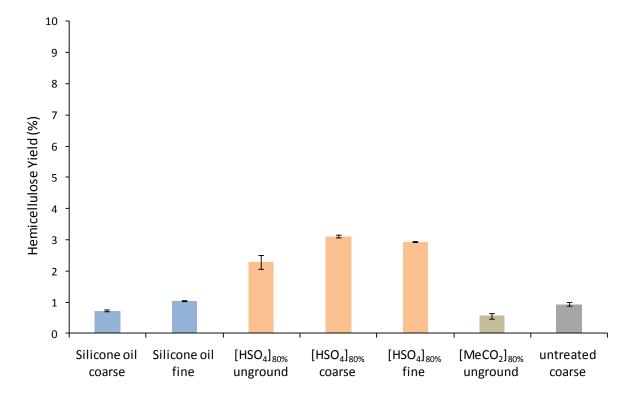



Figure 4: Influence of particle size on hemicellulose yields (percentage of sample dried-weight) from enzymatically treated ground wood chips treated with various liquids. Coarse particle size:  $180 - 850 \mu m$ , fine:  $53 - 150 \mu m$ , treatment conditions:  $90^{\circ}$ C, 18 h. Cation of all ionic liquids is [C<sub>4</sub>C<sub>1</sub>im].



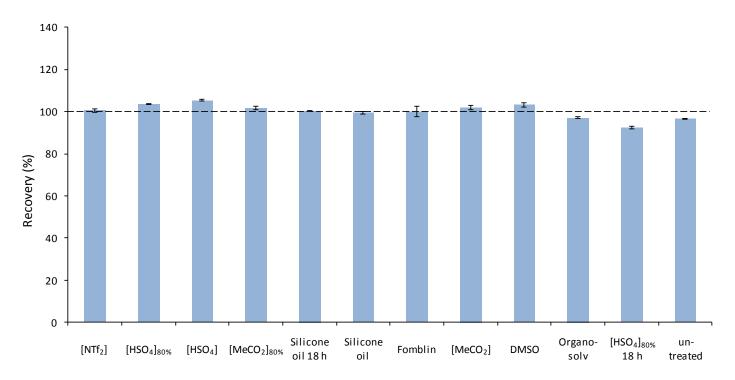



Figure 5: Percentage weight of wood chips recovered as powder after grinding and washing (oven-dried basis) after treatment with various liquids. Cation of all ionic liquids is  $[C_4C_1im]$ . Recoveries over 100% are most likely due to residual treatment liquid in the dried wood powder.



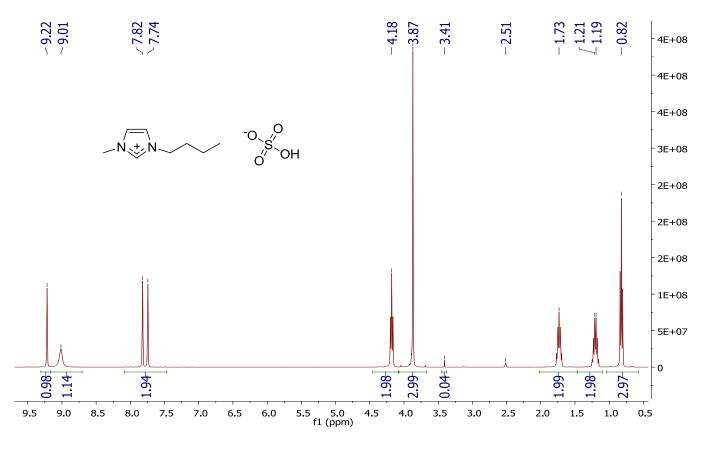



Figure 6: <sup>1</sup>H NMR spectrum of [C<sub>4</sub>C<sub>1</sub>im][HSO<sub>4</sub>] in DMSO d<sub>6</sub>.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2012

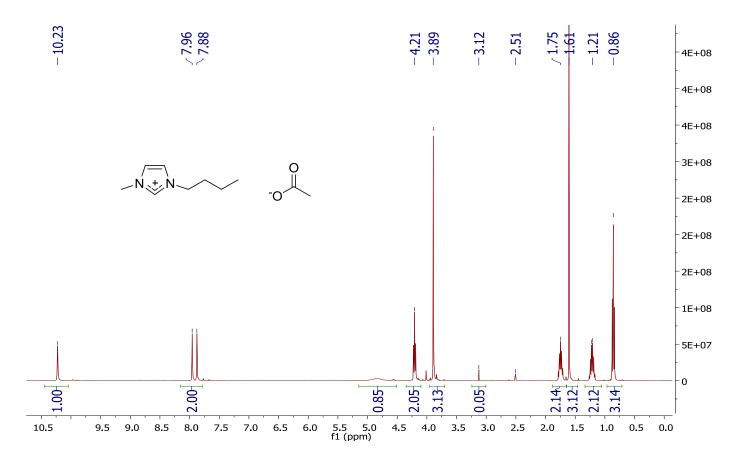



Figure 7: <sup>1</sup>H NMR spectrum of [C<sub>4</sub>C<sub>1</sub>im][MeCO<sub>2</sub>] in DMSO d<sub>6</sub>.

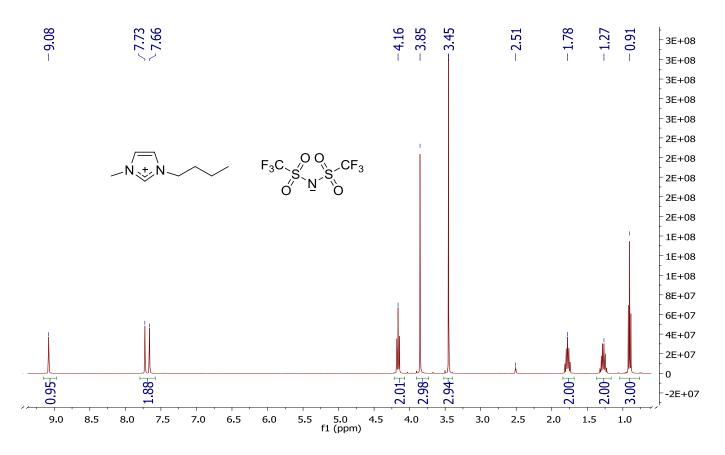



Figure 8: <sup>1</sup>H NMR spectrum of [C<sub>4</sub>C<sub>1</sub>im][NTf<sub>2</sub>] in DMSO d<sub>6</sub>.