Supporting information for the paper

Energy-saving synthesis of potassium iodate *via* electrolysis of potassium iodine and O₂ in a membraneless cell

Experimental details

1. Chemical reagents and Material

Potassium iodine (KI), potassium iodate (KIO₃), potassium hydroxide (KOH), sliver nitrate (AgNO₃), ammonium nitrate (NH₄NO₃) sodium thiosulfate (Na₂S₂O₃) were analytical grade and purchased from Beijing Chemicals Company, China. Polytetrafluoroethylene emulsion (PTFE 60 wt. %), acetylene black were purchased from Yi Lida Co. Ltd, China.

Three kinds of dimensionally stabile anodes (DSAs) electrode including Platinum-coating titanium mesh (Pt/Ti), iridium oxide coating titanium mesh (IrO_2/Ti) and Ruthenium Oxide coating nickel mesh (RuO_2/Ti), were purchased from Xi'an Northwest Institute for Nonferrous Metal Research, China.

2. Preparations of ORC and Ag-ORC electrodes

A porous oxygen cathode was prepared according to the following steps. 300mg PTFE emulsion (60 wt. %) and 100mg ammonium nitrate were dissolved in 1ml $H_2O:C_2H_5OH(V/V 1:1)$. The solution was dipped into 400mg acetylene black powder. The solid mixture was roll-pressed into a 200 µm thick membrane. The membrane was heated from room temperature to 280 °C with a rate of 2°C /min and maintained at 280 °C for 40 min, then cooled to room temperature naturally. The gas released by decomposition of NH_4NO_3 created the porous structure in the membrane. The porous membrane was pressed with a nickel foam substrate as current collector at 10 MPa for 30*s*. This obtained cathode was labeled as ORC.

The mixing, roll-pressing in preparation of Ag-ORC was same as that in preparing ORC, except for using 120mg silver nitrate instead of 100mg ammonium nitrate. By thermal treatment, AgNO₃ in the membrane change to AgO, and the released gases made the porous structure. After being pressed with a piece of ORC, the prototype electrode was cathodically polarized at -0.7V (vs. SCE) in 2M KOH for 10min, so that AgO in it changed to Ag particles, and an Ag-ORC was finished.

3. Cyclic voltammetry and Polarization test.

Electrochemical measurement, such as cyclic voltammetry (CV), potentiodynamic and potentiostatic polarization was carried out with an Electrochemistry Workstation (PARSTAT2273) in a conventional three-electrode system. A platinum plate (1.0cm $\times 1.0$ cm) was used as a counter electrode. A saturated calomel electrode (SCE) was used as a reference electrode. A saturated potassium chloride salt bridge was placed between the reference electrode solution and the cell. All solution was bubbled with nitrogen before electrochemical tests.

Cyclic voltammetry, potentiodynamic and potentiostatic polarization were carried out with an Electrochemistry Workstation (PARSTAT2273) in a conventional three-electrode system. A platinum plate (1 cm^2) was used as a counter electrode. A saturated calomel electrode (SCE) was used as a reference electrode. A saturated potassium chloride salt bridge was placed between the reference electrode solution and the cell.

A platinum plate (2mm×5mm) electrode was used as the working electrode in cyclic voltammetry at 25°C. ORC and Ag-ORC were used as working electrode in Potentiodynamic cathodic polarization at 70°C. Pt/Ti, IrO₂/Ti-, RuO₂/Ti were used as working electrode in Potentiodynamic anodic polarization at 70°C.

All solution was bubbled with nitrogen before electrochemical tests.

4. Electrolysis experiment

The electrolysis method using HEC was tested in a cell separated by ion-exchanged membrane (NEOSEPTA-AMX, Asahi Kasei Chemicals Corporation) with Pt/Ti as cathode and RuO₂/Ti as anode (2.5cm×4.0cm). The anolyte (50ml) was the mixed solution of 1M KI and 2M KOH, and the catholyte (50ml) was 2M KOH. The anolyte and the catholyte were pre-heated to 70°C, and circular flowed in rate of 5ml min⁻¹ respectively with the help of a pump, and before the anolyte being returned to the cell it was cooled down to lead KIO₃ crystallize.

The electrolysis method using ORC or Ag-ORC was tested in a single-compartment cell with RuO₂/Ti as anode. The electrolyte (50ml) was the mixture solution of 1M KI and 2M KOH. Oxygen was continuously introduced into oxygen cathode gas chamber during the electrolysis. The electrolyte was pre-heated to

70°C, and circular flowed in rate of $5\text{ml}\cdot\text{min}^{-1}$ with the help of a pump, and before returning to the cell the electrolyte was cooled down to lead KIO₃ crystallize.

The yield for the production of KIO₃ was calculated as following (Eq. 1),

$$Y = \frac{n_{KIO_3, \text{ produced}}}{n_{KI, \text{ initid}}} \times 100\% = \frac{\frac{m_{KIO_3, \text{ powder}}}{M_{KIO_3}} + c_{IO_3} \cdot V}{n_{KI}} \times 100\%$$
Eq. 1

Where $n_{KI,\text{initial}}$ is the input amount of KI (that is 0.05mol in this study), $n_{KIO_3,\text{ produced}}$ is the amount of the produced KIO₃, which is the addition of the crystallized KIO₃ powder and the remaining IO₃⁻ in the electrolyte. The KIO₃ precipitation was washed by ice-water, and then the KIO₃ was dried at 80°C for two hours. The quantity of KIO₃ in precipitation and the concentration of IO₃⁻ in the final electrolyte solution were determined by the iodometric titration method.¹

In this study, only 90% of the electric quantity needed for 0.05mol KI transforming to KIO_3 was applied in the electrolysis tests, that is to say, the theoretical yield for KIO_3 is only 90%.

Current Efficiency (CE) was defined as the ratio of the practical amounts of KIO_3 to theoretical amounts of KIO_3 , which was calculated by Eq. 2.

$$CE = \frac{Q_{consumed, MO_3}}{Q_{applied}} \times 100\% = \frac{n_{produced KO_3} \cdot Z \cdot F}{Q_{applied}} \times 100\%$$
 Eq. 2

Where Z is 6, the number of the transferred electrons for I⁻ transforming to IO₃⁻, F=96485C·mol⁻¹. $Q_{applied}$ equals to 26051C calculated by Eq.3 $Q_{applied} = 90\% \times Q_t = 90\% \times n_{KL, initial} ZF$ Eq. 3

5. Legends of Figures and lists of Tables

Fig.S1 Cyclic Voltammetry data for KI in alkaline media

Fig.S2 Surface morphology of Ag-ORC

Fig.S3 Potentiostatic cathodic polarization tests of Ag-ORC

Fig.S4 Potentiostatic cathodic polarization tests of ORC

Fig.S5 Potentiodynamic anodic polarization of DSAs

Tab.S1 Electrolysis test of DSAs couping with Ag-ORC

Tab.S2 Electrolysis test at different temperature

Tab.S3 The comparison of three methods for producing KIO₃

Potential / V vs. SCE

Fig. S1 Cyclic voltammograms recorded in alkaline KI medium on Pt electrode at different scan rates from 5~500 mV s⁻¹, temperature 25 °C, electrolyte 1M KI and 2M KOH. The inset shows the relationship between Ipa and $v^{1/2}$.

Fig. S2 SEM images of Ag-ORC.

The morphology of the as-prepared Ag-ORC electrode was observed by a Hitachi S-4700 field-emission scanning electron microscope (FE-SEM) at an acceleration voltage of 20.0 kV.

Fig. S3 The Potentiostatic cathodic polarization curves of Ag-ORC immersed in 2M KOH at -0.33V. (i) in N₂ atmosphere, (ii) in N₂ atmosphere and 0.17M KIO₃, (iii) in O₂ atmosphere and 0.17M KIO₃, (iv) in O₂ atmosphere. Temperature 70 $^{\circ}$ C.

Fig. S4 The Potentiostatic cathodic polarization curves (scan rate of 5mV/s) on DSAs immersed in 2M KOH in the presence of 1M KI and 0.17M KIO₃. DSAs including: (i) IrO_2/Ti , (ii) Pt/Ti, and (iii) RuO₂/Ti. Temperature: 70 °C.

Fig. S5 The Potentiostatic cathodic polarization curves of Ag-ORC immersed in 2M KOH at -0.61V, (i) in O_2 atmosphere, (ii) in O_2 atmosphere and 0.17M KIO₃. Temperature 70°C

As shown by curve (i) in Fig S5, in absence of KIO₃, the current density due to reduction of O₂ was nearly 140 mA·cm⁻², while the current density achieved to 154 mA·cm⁻² in the presence of IO₃⁻ in electrolyte. And the extra current density was due to the reduction of IO₃⁻, meaning that IO₃⁻ was produced on anode at current density of 150 mA·cm⁻² and simultaneously being reduced on ORC cathode at 14 mA·cm⁻². As a result, the CE decreased by nearly 10% when the concentration of IO₃⁻ was 0.17M. And the concentration of IO₃⁻ was about 0.4M at the end period of electrolysis test, so the CE decreased to 79.7%.

Electrolysis effects of different DSAs

Tab. S1 summarizes the electrolysis results by using different anodes but the same cathode of Ag-ORC. The cell voltage of Pt/Ti and RuO_2/Ti are lower than 0.72V,

and the CE of both are higher than 95%. The results are accords with the anodic potentiodynamic polarization (see Fig. S4). Which shows that RuO_2 and Pt are both more effective than IrO_2 for electro-oxidation of Γ . Considering the cost and properties, we chose RuO_2/Ti as the proper anode.

NO.	Cathode	Anode	Average Cell Votalge	CE	Yield
			(V)	(%)	(%)
1	AgORC	IrO ₂ /Ti	0.791	87.9	79.1
2		Pt/Ti	0.698	95.9	86.3
3		RuO ₂ /Ti	0.716	96.3	86.7

 Tab. S1
 Electrolysis effects of different DSAs

^a j=150mA/cm², Temperature 343K, electrode area 10 cm², electrode gap 2mm, electrolysis time 4.82h.

Electrolysis effects at different Temperature.

The electrolysis at reaction temperature in range of 55 to 90°C was tested. As shown in Tab.S2. The cell voltage decreased obviously when the temperature increased, which can be explained that the diffusion rate of ions and the reaction rates on both of anode and cathode increased due to the higher temperature, which lead to the IR of electrolyte and the overpotential on electrodes decrease.

On the other hand, CE also decreased as the temperature increased (as shown in Tab.1 and Fig 1b), and CE was even lower than 90% at 90°C. Several facts may explain the phenomenon: (1) the produced IO_3^- became easier to be reduced on cathode due to higher diffusion rate and reaction rate; (2) the side reaction on anode, *i.g.* oxygen evolution became more obviously at higher temperature.

Considering the effect of the reaction temperature on both of the cell voltage and

No.	temperature	Average Cell Voltage	Current efficiency	Yield
	്റ	(V)	(%)	(%)
1	55	0.865	95.9	86.3
2	60	0.819	96.8	87.1
3	70	0.716	96.3	86.7
4	80	0.687	93.4	84.1
5	90	0.674	88.7	79.8

CE, 70° C was chosen as the proper one.

Tab.S2Electrolysis effects at different Temperature.

In the single-compartment cell with Ag-ORC as the cathode and RuO₂/Ti as the anode, temperature 70 $^{\circ}$ C, j=150mA cm⁻², electrode area 10cm², electrode spacing 2mm.

The comparison of three methods for producing KIO₃

Based on the references^{2, 3} and the theoretical calculation, the comparison among the three methods for producing KIO₃, namely chemical oxidation, electrolysis using HEC and electrolysis using ORC was summarized in Tab.1.

Processes	Reaction equation		Oxidant	Oxidant
			/current	/electricity
		(%)	efficiency	for 1t KIO ₃
Chemical	$11\text{KClO}_3 + 3\text{H}_2\text{O} + 6\text{I}_2 \xrightarrow{\text{H}^+ 70 - 90^\circ \mathbb{C}} 6\text{KH}(\text{IO}_3)_2 + 5\text{Cl}_2 \uparrow + 3\text{KCl}$	~90	~90%	580kg
oxidation**	$KH(IO_3)_2 + KOH \rightarrow 2KIO_3 + H_2O$			KClO ₃
Electrolysis	electricity OH 60~80°C	~87	~97%	1700Kwb
Using HEC	KI+6H ₂ O → KIO ₃ +3H ₂ ↑			1700Kwii
Electrolysis	electricity OH ⁻ 60-80 [°] C	~86	~96%	560Kwb
Using ORC	$2KI+3O_2 \longrightarrow 2KIO_3$	00	- 70 /0	JOOKWI

Tab.S3 The comparison of three methods for producing KIO₃

* The yield for KIO_3 by chemical oxidation is obtained by adding stoichiometric or more amount of $KCIO_3$, while the yields for KIO_3 by both electrolysis processes are obtained when only 90% of theoretical electric quantity is applied. ** I₂ is the main form in acidic media, while I₂ transfer to KI and KIO_3 spontaneously in basic media. In order to distinguish the reactants, pure KI is used as initial reactants in basic media.

Reference

- 1. W. Horwitz, A. Senzel, H. Reynolds and D. Park, Official methods of analysis of the Association of Official Analytical Chemists, AOAC, 1975.
- 2. Y. W. Zhang, and A. M. Wang, China well and salt, 2008, 198, 13-14
- 3. Z. S. Yang, Inorganic chemicals industry (Chinese), 1999, **31**, 23-25.