Supplementary Information

An in-water, on-water domino process for synthesis.

Philip Norcott, Calan Spielman and Christopher S. P. McErlean*

School of Chemistry, the University of Sydney, NSW, 2006, Australia. Fax: +61 2 9351 3329; Tel: +61 2 9351 3970; E-mail: christopher.mcerlean@sydney.edu.au

General Experimental Details	 S2
Experimental Details	 S2
References	 S7
NMR spectra	 S8

General Experimental:

All solvents and reagents were used as received from commercial sources. Melting points were determined using a Stanford Research Systems Optimelt automated melting point system and are uncorrected. Infrared spectra were acquired neat on a Bruker Alpha-E ATR spectrometer. UV-vis absorption spectra were recorded on a Varian Cary 50 conc spectrophotometer and absorption maxima are expressed in wavenumbers (cm⁻¹). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE DPX300 (¹H frequencies 300MHz; ¹³C frequencies 75). ¹H chemical shifts are expressed as parts per million (ppm) with residual chloroform (δ 7.26) or residual acetone (δ 2.09) as reference and are reported as chemical shift (δ_{H}); relative integral; multiplicity (s = singlet, br = broad, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet of triplets, q = quartet, m = multiplet); and coupling constants (*J*) reported in Hz. ¹³C NMR chemical shifts are expressed as parts per million (ppm) with residual chloroform (δ 77.1) or or residual acetone (δ 30.6) as internal reference and are reported as chemical shift (δ_{C}); multiplicity (assigned from DEPT experiments). High resolution mass spectra were recorded on a Bruker ApexII Fourier Transform Ion Cyclotron Resonance mass spectrometer with a 7.0 T magnet, fitted with an off-axis Analytical electrospray source. Selected mass spectrometric results were obtained at the Bioanalytical Mass Spectrometry Facility within the Mark Wainwright Analytical Centre of the University of New South Wales. Subsidised access to this facility is gratefully acknowledged.

Experimental section

2-(*N*-**Anilino**)-**5-methylbenzoquinone** (**2**).^{1, 2} To a 21 mL screw top vial containing aqueous hydrogen peroxide (30% w/w; 10 mL) was added toluhydroquinone (273 mg, 2.20 mmol), aniline (91 μ L, 1.0 mmol) and I₂ (25 mg, 0.1 mmol). The mixture was stirred vigorously overnight, after which a purple solid was evident. The mixture was diluted with aqueous sodium hydrogen carbonate (50 mL) and extracted with dichloromethane (4 × 10 mL). The solvent was removed and the residue was subjected to flash chromatography, eluting with 10% ethyl acetate in hexanes, to give the *title compound* (125 mg, 58%) as a purple solid. mp 145–146 °C (decomp.) (Lit.³ 150–151 °C); R_f 0.36 (20 % ethyl acetate in hexanes); v_{max} (solid)/cm⁻¹ 3266, 1672, 1644, 1599, 1572, 1513, 1447, 1295; λ_{max} (EtOH) 258 (log ε 4.07), 389 (3.09), 493 nm (3.21); ¹H NMR (300 MHz; CDCl₃): 7.43–7.16 (6 H, m), 6.58 (1 H, q, *J* 1.5 Hz), 6.18 (1 H, s), 2.10 (3 H, d, *J* 1.5 Hz); ¹³C NMR (75 MHz; CDCl₃) 186.8 (C), 183.9 (C), 149.7 (C), 143.1 (C), 137.6 (C), 129.7 (CH), 129.4 (CH), 125.4 (CH), 122.2 (CH), 101.1 (CH), 16.5 (CH₃); HRMS (ESI) calcd for C₁₃H₁₁NO₂Na (MNa⁺) 236.06820, found 236.06797,

and 2-(*N*-anilino)-6-methylbenzoquinone (7)^{1, 2} (75 mg, 35%) as a purple solid. mp 149–150 °C (decomp.) (Lit.² 154–155 °C); R_f 0.24 (20 % ethyl acetate in hexanes); v_{max} (solid)/cm⁻¹ 3317, 1643, 1580, 1524, 1443, 1275; λ_{max} (EtOH) 262 (log ε 4.19), 370 (3.37), 495 nm (3.20); ¹H NMR (300 MHz; CDCl₃) 7.44–7.04(6 H, m), 6.53 (1 H, dd, *J* 2.4, 1.5 Hz), 6.14 (1 H, d, *J* 2.4 Hz), 2.09 (3 H, d, *J* 1.5 Hz); ¹³C NMR (75 MHz; CDCl₃) 186.9 (C), 184.5 (C), 143.1 (C), 141.3 (C), 137.7 (C), 136.1 (CH), 129.7 (CH), 125.4 (CH), 122.3 (CH), 100.9 (CH), 15.5 (CH₃); HRMS (ESI) calcd for C₁₃H₁₁NO₂Na (MNa⁺) 236.06820, found 236.06839.

Murrayaquinone-A (1).^{4, 5} A mixture of 2-(*N*-anilino)-5-methylbenzoquinone (2) (38 mg, 0.18 mmol), palladium (II) acetate (46 mg, 0.19 mmol) and cupric acetate (40 mg, 0.20 mmol) in glacial acetic acid (5 mL) was heated under reflux for 48 h with gentle stirring. The mixture was cooled to room temperature and poured onto aqueous sodium hydrogen carbonate (50 mL). Solid sodium hydrogen carbonate was added until the mixture was neutral. The mixture was extracted with ethyl acetate (5 × 30 mL), the solvent was removed and the residue was subjected to flash chromatography, eluting with dichloromethane, to give the *title compound* (37 mg, 98%) as purple needles. mp 236–237 °C (decomp.) (Lit.² 237–239 °C); R_f 0.36 (dichloromethane); v_{max} (solid)/cm⁻¹ 3177, 1660, 1632, 1599, 1567, 1404, 1324, 1233; λ_{max} (EtOH) 257 (log ε 4.46), 390 nm (3.64); ¹H NMR (300 MHz; (CD₃)₂CO + DMSO-d₆) 12.78 (1 H, br s), 8.12 (1 H, d, *J* 8.1 Hz), 7.60 (1 H, d, *J* 8.4 Hz), 7.44–7.31 (2 H, m), 6.61 (1 H, br q, *J* 1.5 Hz), 2.12 (3 H, d, *J* 1.5 Hz); ¹³C NMR (75 MHz; (CD₃)₂CO + DMSO-d₆) 184.3 (C), 181.4 (C), 149.4 (C), 139.0 (C), 137.3 (C), 132.9 (CH), 127.4 (CH), 125.1 (C), 124.9 (CH), 123.0 (CH), 117.0 (C), 115.1 (CH), 16.5 (CH₃).

epi-Murrayaquinone-A (*epi*-1).² A mixture of 2-anilino-6-methyl-1,4-benzoquinone (10.6 mg, 0.050 mmol), palladium acetate (13 mg, 0.051 mmol) and cupric acetate (21 mg, 0.10 mmol) were taken up in glacial acetic acid (5 mL). The reaction mixture was stirred under reflux for 48 hours, then poured over saturated NaHCO₃ solution (50 mL) and extracted with ethyl acetate (3 × 25 mL). The combined organic phases were dried (Na₂SO₄), the solvent removed and the residue was subjected to flash chromatography on silica, eluting with

dichloromethane to give the *title compound* (10.3 mg, 98%) as a red solid; mp 239 °C (decomp.) (lit. mp 237-239 °C); $\delta_{\rm H}$ (300 MHz; DMSO- d_6) 12.82 (1H, br s, NH), 8.00 (1H, d, ArH), 7.53 (1H, d, ArH), 7.38 (1H, t, ArH), 7.29 (1H, t, ArH), 6.58 (1H, d, ArH), 2.04 (3H, d, CH₃); $\delta_{\rm C}$ (75 MHz; DMSO- d_6) 183.4, 180.2, 144.1, 137.7, 135.8, 134.8, 126.4, 123.8, 123.3, 121.7, 115.6, 113.8, 15.0.

2-(2-Chloroanilino)-5-methyl-1,4-benzoquinone (2a). Toluhydroquinone (240 mg, 1.93 mmol) and 2-chloroaniline (97 μ L, 0.92 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 4 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (2 × 25 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give **2a** (48 mg, 21%) as a red solid. mp 102 °C; λ_{max} (CHCl₃/nm 489 (ϵ 2520), 289 (5360); v_{max} (solid)/cm⁻¹ 3329, 1707, 1671, 1644, 1605, 1585, 1524, 1443, 1359, 1291, 1221, 1175; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.55 (1H, s, NH), 7.50-7.40 (2H, m, ArH), 7.31 (1H, dd, ArH), 7.12 (1H, dd, ArH), 6.61 (1H, d, ArH), 6.15 (1H, s, ArH), 2.10 (3H, s, CH₃); $\delta_{\rm C}$ (50 MHz; CDCl₃) 187.0, 183.5, 149.4, 142.4, 134.7, 130.5, 129.7, 127.8, 127.1, 125.9, 122.5, 102.1, 16.5; HRMS (ESI) Found MNa⁺ 270.0285. C₁₃H₁₀ClNO₂Na⁺ requires 270.0292.

and **2-(2-chloroanilino)-6-methyl-1,4-benzoquinone (7a)** (30 mg, 13%) as a red solid. mp 126 °C; λ_{max} (CHCl₃)/nm 490 (ϵ 3960), 289 (6230); v_{max} (solid)/cm⁻¹ 3327, 1645, 1584, 1520, 1441, 1275, 1037 891, 759; δ_{H} (300 MHz; CDCl₃) 7.57 (1H, s, NH), 7.48-7.40 (2H, m, ArH), 7.31 (1H, dd, ArH), 7.12 (1H, dd, ArH), 6.54 (1H, s, ArH), 6.11 (1H, d, ArH), 2.11 (3H, s, CH₃); δ_{C} (75 MHz; CDCl₃) 186.9, 184.2, 142.4, 141.8, 135.8, 134.9, 130.5, 127.8, 127.2, 126.0, 122.6, 102.0, 15.6; HRMS (ESI) Found MNa⁺ 270.0292. C₁₃H₁₀ClNO₂Na⁺ requires 270.0292.

2-(3-Chloroanilino)-5-methyl-1,4-benzoquinone (2b). Toluhydroquinone (249 mg, 2.00 mmol) and 3-chloroaniline (100 μ L, 0.95 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 4 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate in hexanes, to give **2b** (36 mg, 15%) as a dark purple solid. mp 173-174 °C; HRMS (APCI) Found: MH⁺, 248.0470. C₁₃H₁₁ClNO₂⁺ requires 248.0473; λ_{max} (CHCl₃)/nm 489 (ϵ 1010), 284 (3250); v_{max} (solid)/cm⁻¹ 3239 (NH), 1642, 1576, 1478, 1420, 1220; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.31 (1H, t, ArH), 7.21 (1H, t, ArH), 7.14 (1H, m, ArH), 7.09 (1H, m, ArH), 6.58 (1H, m, H-6), 6.18 (1H, s, H-3), 2.09 (3H, d, CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 186.9, 183.6, 149.7, 142.6, 139.0, 135.5, 130.9, 129.5, 125.4, 122.0, 120.1, 102.0, 16.5; *m/z* (APCI) 250/248 (M⁺, 32/100%), 213 (86);

and **2-(3-chloroanilino)-6-methyl-1,4-benzoquinone (7b)** (92 mg, 39%) as a dark purple solid. mp 153.3 °C; HRMS (APCI) Found: MH^+ , 248.0470. $C_{13}H_{11}CINO_2^+$ requires 248.0473; λ_{max} (CHCl₃)/nm 489 (ϵ 1550), 289 (6750); ν_{max} (solid)/cm⁻¹ 3326 (NH), 1644 (CO), 1575, 1478, 1262; δ_H (200 MHz; CDCl₃) 7.40-7.05 (4H, m, ArH), 6.55 (1H, t, ArH), 6.16 (1H, d, ArH), 2.09 (3H, d, CH₃); δ_C (50 MHz; CDCl₃) 187.0, 184.3, 142.7, 141.7, 139.0, 136.0, 135.5, 130.8, 125.5, 122.2, 120.2, 101.8, 15.7; *m/z* (APCI) 250/248 (M⁺, 32/100%), 213 (85).

2-(4-Chloroanilino)-5-methyl-1,4-benzoquinone (**2c**).² Toluhydroquinone (212 mg, 1.71 mmol) and 4-chloroaniline (112 mg, 0.88 mmol) were taken up in aq. H_2O_2 (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 18 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give **2c** (68 mg, 31%) as a dark purple solid. mp 153-165 °C; HRMS (ESI) Found: MNa⁺, 270.0295. C₁₃H₁₀ClNO₂Na⁺ requires 270.0292; λ_{max} (CHCl₃)/nm 502 (ϵ 2920), 288 (6450); v_{max} (solid)/cm⁻¹ 3260, 1676, 1643, 1574, 1492, 1463, 1404, 1352, 1093, 887, 817; δ_{H} (300 MHz; CDCl₃) 7.35 (2H, m, ArH), 7.16 (2H, m, ArH), 6.57 (1H, m), 6.11 (1H, s), 2.10 (3H, s, CH₃); δ_{C} (75 MHz; CDCl₃) 186.9, 183.9, 150.0, 143.0, 136.5, 130.9, 130.1, 129.7, 129.1, 126.8, 123.6, 101.6, 16.7;

and **2-(4-chloroanilino)-6-methyl-1,4-benzoquinone** (**7c**)² (26 mg, 12%) as a dark purple solid. mp 164 °C; (Found: MNa^+ , 270.0295. $C_{13}H_{10}CINO_2Na^+$ requires 270.0292); λ_{max} (CHCl₃)/nm 497 (ϵ 2380), 288 (5470); ν_{max} (solid)/cm⁻¹ 3310, 1645, 1596, 1491, 1407, 1340, 1277, 1226, 1186, 1094, 899, 819; δ_H (300 MHz; CDCl₃) 7.34 (2H, m, ArH), 7.14 (2H, m, ArH), 6.52 (1H, m), 6.06 (1H, d), 2.08 (3H, s, CH₃); δ_C (75 MHz; CDCl₃) 187.0, 184.6, 143.2, 141.8, 136.6, 136.3, 131.0, 130.1, 123.7, 101.5, 15.8.

2-(2,4,5-trichloroanilino)-5-methyl-1,4-benzoquinone (2d). Toluhydroquinone (208 mg, 1.67 mmol) and 2,4,5-trichloroaniline (159 mg, 0.81 mmol) were taken up in aq. H_2O_2 (30% v/v; 5 mL). A catalytic amount of I_2

was added and the reaction mixture was stirred vigorously for 15 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 25 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 5% ethyl acetate-hexanes, to give **2d** (22 mg, 9%) as a red solid. mp 127-130 °C; HRMS (ESI) Found: MH⁺, 315.9689. $C_{13}H_9Cl_3NO_2^+$ requires 315.9693; λ_{max} (CHCl₃)/nm 506 (ϵ 530), 291 (1830); v_{max} (solid)/cm⁻¹ 3309, 2921, 2851, 1669, 1649, 1567, 1492, 1454, 1366, 1268, 1187, 1132, 1080, 882; δ_H (300 MHz; CDCl₃) 7.53 (1H, s, ArH), 7.19 (1H, s, ArH), 7.13 (1H, s, ArH), 6.86 (1H, d, ArH), 2.12 (3H, s, CH₃); δ_C (75 MHz; CDCl₃) 180.8, 180.3, 146.8, 142.4, 134.2, 134.1, 131.0, 130.7, 129.7, 127.9, 127.6, 88.5, 15.6;

and **2-(2,4,5-trichloroanilino)-6-methyl-1,4-benzoquinone (7d)** (21 mg, 8%) as a red solid. mp 169-171 °C; HRMS (ESI) Found: MH⁺, 315.9690. $C_{13}H_9Cl_3NO_2^+$ requires 315.9693; λ_{max} (CHCl₃)/nm 504 (ϵ 470), 290 (1700); ν_{max} (solid)/cm⁻¹ 3309, 2923, 2851, 1668, 1646, 1572, 1495, 1455, 1371, 1290, 1222, 1165, 1122, 1076, 880; δ_H (200 MHz; CDCl₃) 7.53 (1H, s, ArH), 7.17 (1H, s, ArH), 7.14 (1H, s, ArH), 6.62 (1H, d, ArH), 2.19 (3H, d, CH₃); δ_C (75 MHz; CDCl₃) 187.9, 187.7, 146.0, 142.6, 136.7, 136.6, 133.5, 131.4, 130.3, 121.0, 118.0, 116.4, 15.9.

2-(4-Fluoroanilino)-5-methyl-1,4-benzoquinone (**3e**).² Toluhydroquinone (277 mg, 2.24 mmol) and 4-fluoroaniline (100 μ L, 1.04 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 15 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give **3e** (134 mg, 56%) as a purple solid. mp 176 °C; λ_{max} (CHCl₃)/nm 495 (ϵ 2230), 283 (6050), 266 (3210), 261 (3130); v_{max} (solid)/cm⁻¹ 3182, 1676, 1643, 1576, 1506, 1411, 1218, 888, 819; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.17 (2H, m, ArH), 7.08 (2H, m, ArH), 6.55 (1H, s), 6.00 (1H, s), 2.08 (3H, s); $\delta_{\rm C}$ (75 MHz; CDCl₃) 186.9, 184.0, 150.0, 143.9, 129.6, 124.8, 124.7, 117.0, 116.7, 100.9, 16.7; HRMS (ESI) Found: MNa⁺, 254.0587. C₁₃H₁₀FNO₂Na⁺ requires 254.0588.

and **2-(4-fluoroanilino)-6-methyl-1,4-benzoquinone** (**7e**)² (34 mg, 14%) as a purple solid, mp 140 °C. λ_{max} (CHCl₃)/nm 495 (ϵ 2500), 288 (5630); ν_{max} (solid)/cm⁻¹ 3263, 2921, 1672, 1646, 1581, 1502, 1410, 1341, 1274, 1214, 1188, 903, 826; δ_{H} (300 MHz; CDCl₃) 7.17 (2H, m, ArH), 7.08 (2H, m, ArH), 6.51 (1H, m), 5.95 (1H, m), 2.07 (3H, m); δ_{C} (75 MHz; CDCl₃) 187.0, 184.7, 162.1, 158.9, 144.0, 141.6, 136.3, 133.8, 125.0, 117.0, 100.8, 15.8; HRMS (ESI) Found: MNa⁺, 254.0591. C₁₃H₁₀FNO₂Na⁺ requires 254.0588.

2-(4-Bromoanilino)-5-methyl-1,4-benzoquinone (3f). Toluhydroquinone (147 mg, 1.18 mmol) and 4bromoaniline (103 mg, 0.60 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 10 minutes. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 5% ethyl acetate-hexanes, to give **2f** (47 mg, 27%) as a dark purple solid. mp 157 °C; HRMS (ESI) Found: MH⁺, 291.9964. C₁₃H₁₁BrNO₂⁺ requires 291.9968; λ_{max} (CHCl₃)/nm 498 (ε 2350), 288 (11 700); v_{max} (solid)/cm⁻ ¹3237, 1674, 1643, 1575, 1512, 1488, 1299, 886, 818; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.50 (2H, m, ArH), 7.10 (2H, m, ArH), 6.58 (1H, m), 6.13 (1H, s), 2.10 (3H, s, CH₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 186.8, 183.7, 179.4, 149.8, 142.7, 136.8, 132.1, 129.5, 123.6, 122.8, 118.3, 101.6, 16.5;

and **2-(4-bromoanilino)-6-methyl-1,4-benzoquinone (7f)** (34 mg, 19%) as a dark purple solid. mp 150 °C; HRMS (ESI) Found: MH⁺, 291.9965. $C_{13}H_{11}BrNO_2^+$ requires 291.9968; λ_{max} (CHCl₃)/nm 495 (ϵ 2560), 288 (9440); ν_{max} (solid)/cm⁻¹ 2926, 1712, 1602, 1585, 1361, 1266, 1221, 732, 530; δ_H (300 MHz; CDCl₃) 7.50 (2H, m, ArH), 7.10 (2H, m, ArH), 6.54 (1H, m), 6.10 (1H, m), 2.09 (3H, m, CH₃); δ_C (75 MHz; CDCl₃) 186.8, 184.4, 142.8, 141.6, 136.9, 136.1, 132.9, 123.8, 118.4, 101.5, 15.6.

2-(4-Iodoanilino)-5-methyl-1,4-benzoquinone (2g) and 2-(4-iodoanilino)-6-methyl-1,4-benzoquinone (7g). Toluhydroquinone (133 mg, 1.07 mmol) and 4-iodoaniline (110mg, 0.50 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 18 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give an inseparable mixture of **2g** and **7g** (46 mg, 27%) as a dark solid; λ_{max} (CHCl₃)/nm 518 (ϵ 3200), 380 (1420), 291 (9290); v_{max} (solid)/cm⁻¹ 3294, 2923, 2854, 1644, 1558, 1482, 1393, 1268, 1215, 1125, 1057, 1004, 880, 814; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.65 (2H, m, ArH), 7.37 (1H, s, ArH), 6.81 (2H, m, ArH), 6.58 (1H, s, ArH), 2.18 (3H, s, CH₃), 2.10 (3H, s, CH₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 181.4, 181.0, 148.5, 147.0, 141.9, 138.8, 137.8, 136.8, 134.4, 129.6, 127.1, 126.9, 123.8, 89.9, 89.8, 17.9, 15.5; HRMS (ESI) Found MH⁺ 339.9822. C₁₃H₁₁INO₂⁺ requires 339.9829.

2-(4-Ethoxyanilino)-5-methyl-1,4-benzoquinone (2h). Toluhydroquinone (197 mg, 1.59 mmol) and 4ethoxyaniline (100 µL, 0.77 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 10 minutes. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give **2h** (140 mg, 70%) as a purple solid, mp 122 °C; λ_{max} (CHCl₃)/nm 518 (ϵ 5430), 283 (1680), 263 (1340), 258 (1270); v_{max} (solid)/cm⁻¹ 3262, 2977, 2924, 1639, 1579, 1499, 1282, 1217, 1169, 821; δ_{H} (300 MHz; CDCl₃) 7.12 (2H, m, ArH), 6.90 (2H, m, ArH), 6.53 (1H, m), 5.97 (1H, s), 4.03 (2H, q, CH₃CH₂O), 2.08 (1H, s, CH₃), 1.42 (3H, t, CH₃CH₂O); δ_{C} (75 MHz; CDCl₃) 186.8, 184.3, 157.2, 150.2, 144.3, 130.3, 129.5, 124.6, 115.8, 100.2, 64.1, 16.8, 15.1; *m/z* (APCI) 512 (47%), 258 (M⁺, 100), 213 (24); HRMS (APCI) Found: MNa⁺, 280.0944. C₁₅H₁₅NO₃Na⁺ requires 280.0950

and **2-(4-ethoxyanilino)-6-methyl-1,4-benzoquinone (7h)** (49 mg, 25%) as a purple solid. mp 159 °C, λ_{max} (CHCl₃)/nm 518 (ϵ 450), 284 (1510); ν_{max} (solid)/cm⁻¹ 3244, 2979, 2924, 1644, 1574, 1514, 1473, 1244; δ_{H} (300 MHz; CDCl₃) 7.12 (2H, m, ArH), 6.90 (2H, m, ArH), 6.50 (1H, m), 5.94 (1H, s), 4.03 (2H, q, CH₃CH₂O), 2.07 (1H, s, CH₃), 1.42 (3H, t, CH₃CH₂O); δ_{C} (75 MHz; CDCl₃) 186.8, 184.7, 157.1, 144.2, 141.2, 136.4, 130.2, 124.6, 115.6, 100.0, 64.0, 15.5, 14.9.HRMS (APCI) Found: MNa⁺, 280.0944. C₁₅H₁₅NO₃Na⁺ requires 280.0950.

2-(4-Acetamidoanilino)-5-methyl-1,4-benzoquinone (2i) 2-(4-acetamidoanilino)-6-methyl-1,4and benzoquinone (7i). Toluhydroquinone (169 mg, 1.36 mmol) and 4-aminoacetaniline (99 mg, 0.66 mmol) were taken up in aq. H_2O_2 (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 6 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (5 \times 50 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 50% ethyl acetate-hexanes, to give an inseparable mixture of 2i and 7i (71 mg, 40%) as a purple solid; (Found: MNa^+ , 293.0897. $C_{15}H_{14}N_2O_3Na^+$ requires 293.0902); λ_{max} (CHCl₃)/nm 513 (ε 1520), 285 (7140), 263 (3910); ν_{max} (solid)/cm⁻¹ 3295, 3191 (NH), 3077, 1674 (CO), 1575, 1524, 1409; δ_H (300 MHz; DMSO-d⁶) 10.03 (1H, s, NH), 8.88 (1H, s, NH), 7.63 (2H, m, ArH), 7.29 (2H, m, ArH), 6.69 (1H, s), 6.56 (1H, s), 5.85 (1H, s), 5.79 (1H, d), 2.08 (3H, s, CH₃), 2.02 (3H, s, CH₃); δ_C (75 MHz; DMSO-*d*⁶) 186.5, 186.4, 184.8, 184.7, 169.2, 149.4, 145.5, 145.4, 142.3, 137.4, 136.0, 134.0, 133.9, 130.4, 124.7, 124.6, 120.6, 100.0, 99.9, 24.8, 16.8, 14.9; m/z (APCI) 271 (M⁺, 100%), 229 (20), 213 (6).

2-(4-Nitroanilino)-5-methyl-1,4-benzoquinone (2j). Toluhydroquinone (173 mg, 1.39 mmol) and 4nitroaniline (99 mg, 0.72 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 48 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 30 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 50% dichloromethane-toluene, to give **2j** (37 mg, 20%) as a red solid. mp 218 °C; HRMS (ESI) Found: MH⁺, 259.0710. C₁₃H₁₁N₂O₄⁺ requires 259.0713; λ_{max} (CHCl₃)/nm 467 (ϵ 1370), 331 (3860); v_{max} (solid)/cm⁻¹ 2921, 2852, 1567, 1502, 1328, 1111, 1024, 1003; $\delta_{\rm H}$ (200 MHz; DMSO-*d*⁶) 9.35 (1H, br s, NH), 8.23 (2H, d, ArH), 7.60 (2H, d, ArH), 6.78 (1H, d, ArH), 6.30 (1H, s, ArH), 2.00 (3H, d, CH₃); $\delta_{\rm C}$ (50 MHz; DMSO-*d*⁶) 186.5, 183.3, 147.7, 145.3, 142.5, 142.3, 130.2, 125.1, 121.3, 104.1, 15.6;

and **2-(4-nitroanilino)-6-methyl-1,4-benzoquinone (7j)** (42 mg, 23%) as a red solid. mp 215 °C; HRMS (ESI) Found: MH⁺, 259.0707. $C_{13}H_{11}N_2O_4^+$ requires 259.0713; λ_{max} (CHCl₃)/nm 472 (ϵ 2070), 331 (5910); v_{max} (solid)/cm⁻¹ 2926, 1711, 1420, 1360, 1268, 1221, 732, 529; δ_H (300 MHz; DMSO-*d*⁶) 9.35 (1H, br s, NH), 8.22 (2H, d, ArH), 7.59 (2H, d, ArH), 6.62 (1H, s, ArH), 6.23 (1H, d, ArH), 2.01 (3H, d, CH₃); δ_C (50 MHz; DMSO-*d*⁶) 186.6, 183.6, 145.5, 142.6, 142.4, 142.2, 134.2, 125.1, 121.3, 104.0, 15.2.

2-(4-Fluoroanilino)-1,4-naphthoquinone (**9**).^{6, 7} Naphthohydroquinone (103 mg, 0.642 mmol) and 4-fluoroaniline (30 μ L, 0.31 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 10 minutes. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give **9** (33 mg, 39%) as a red solid, mp 242 °C (lit., mp 244 °C); (Found: MNa⁺, 267.0690. C₁₆H₁₀NO₂FNa⁺ requires 267.0696); λ_{max} (MeOH)/nm 461 (ϵ 4020), 291 (11 100); v_{max} (solid)/cm⁻¹ 3340, 2919, 1664, 1590, 1571, 1504, 1298, 1210, 819; $\delta_{\rm H}$ (300 MHz; DMSO-*d*⁶) 9.22 (1H, s, NH), 8.07-7.74 (4H, m, ArH), 7.41 (2H, m, ArH), 7.27 (2H, m, ArH), 5.99 (1H, s); $\delta_{\rm C}$ (75 MHz; DMSO-*d*⁶) 184.8, 182.5, 181.5, 146.5, 138.7, 134.9, 134.2, 132.6, 131.5, 130.4, 126.0, 125.8, 125.3, 116.2, 115.9, 101.8; *m/z* (APCI) 269 (MH⁺, 15%), 268 (100).

2-(4-Fluoroanilino)-5-bromo-1,4-benzoquinone (11). Bromohydroquinone (205 mg, 1.08 mmol) and 4-fluoroaniline (50 μ L, 0.52 mmol) were taken up in aq. H₂O₂ (30% v/v; 5 mL). A catalytic amount of I₂ was added and the reaction mixture was stirred vigorously for 15 hours. The reaction mixture was poured over saturated NaHCO₃ solution (50 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phases were dried (Na₂SO₄), evaporated *in vacuo* and purified by flash chromatography on silica, eluting with 10% ethyl acetate-hexanes, to give to give **11** (18 mg, 12%) as a dark solid; Found: MNa⁺ 294.9638. C₁₂H₇BrFNO₂Na⁺ requires 294.9645; λ_{max} (CHCl₃)/nm 516 (ϵ 760), 288 (4010); v_{max} (solid)/cm⁻¹

6-Methyl-1,4,4*a***,8***a***-tetrahydro-1,4-methanonaphthalene-5,8-dione (15).⁸ Toluhydroquinone (203 mg, 1.64 mmol) and cyclopentadiene (100 µL, 1.19 mmol) were taken up in aq. H₂O₂ solution (30% v/v; 5 mL). A catalytic amount of iodine was added and the reaction mixture was stirred vigorously for 45 min. Brine (50 mL) was added and the product was extracted with dichloromethane (3 × 30 mL), dried over Na₂SO₄ and concentrated** *in vacuo***. Purified by flash chromatography on silica, eluting with 10% ethyl acetate in hexanes to give 15** (82 mg, 50%) as a pale yellow solid; mp. 60.6-61.4 °C (lit. 62-63 °C); $\delta_{\rm H}$ (300 MHz; CDCl₃) 6.33 (1H, s), 5.88 (2H, dd, *J* = 4.2 Hz, 2.6 Hz), 3.37 (2H, s, CH), 3.09 (2H, s, CH), 1.78 (3H, s, CH₃), 1.34 (2H, m, CH₂); $\delta_{\rm C}$ (75 MHz; CDCl₃) 199.4 (C), 198.9 (C), 151.5 (C), 139.5 (CH), 135.4 (CH), 134.8 (CH), 48.9 (CH), 48.8 (CH), 48.7 (CH₂), 48.5 (CH), 48.1 (CH), 16.2 (CH₃);

Triple domino cascade:

1a-methyl-2a,3,6,6a-tetrahydro-3,6-methanonaphtho[2,3-*b*]oxirine-2,7(1*aH*,7*aH*)-dione (17).⁹ Toluhydroquinone (123 mg, 0.99 mmol), cyclopentadiene (68 µL, 0.81 mmol) and aniline (74 µL, 0.81 mmol) were taken up in aq. H₂O₂ solution (30% v/v; 5 mL). A catalytic amount of iodine was added and the reaction mixture was stirred vigorously for 90 min at room temperature. Poured over sat. NaHCO₃ solution (30 mL), extracted with dichloromethane (3 × 20 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purified by flash chromatography on silica, eluting with 5% ethyl acetate/hexanes and recrystallised from ethanol to give **15** (82 mg, 50%) as a pale yellow solid; and **2** (22 mg, 13%) as a purple solid; and **17** (20 mg, 12%) as a colourless crystalline solid; mp. 138.3-138.5 °C (lit. 136-138 °C); $\delta_{\rm H}$ (300 MHz; CDCl₃) 5.97 (2H, m, CH), 3.39 (2H, t, *J* = 2.8 Hz, CH), 3.31 (1H, s, CH), 3.22 (2H, m, CH), 1.43 (1H, m, CH₂), 1.40 (3H, s, CH₃), 1.24 (1H, m, CH₂); $\delta_{\rm C}$ (75 MHz; CDCl₃) 205.3, 204.8, 136.7, 136.6, 64.6, 64.2, 50.5, 49.6, 46.7, 43.4, 43.3, 14.6;

Epoxidation reactions:

Diels-Alder adduct **15** (22 mg, 0.12 mmol) and potassium carbonate (11 mg, 0.08 mmol, 70 mol%) were taken up in aq. H_2O_2 solution (5 mL, 30% v/v) and stirred vigorously at room temperature for 15 minutes. Diluted with brine solution (30 mL) and extracted with ethyl acetate (3 × 25 mL). Dried over Na₂SO₄ and solvent removed *in vacuo*. Purified by flash chromatography, eluting with 5% ethyl acetate/hexanes, to give **17** (23 mg, 97%) as an off-white solid.

Diels-Alder adduct **15** (21 mg, 0.11 mmol) and triethylamine (6 μ L, 0.043 mmol, 25 mol%) were taken up in aq. H₂O₂ solution (5 mL, 30% v/v) and stirred vigorously at room temperature for 15 minutes. Diluted with brine solution (30 mL) and extracted with ethyl acetate (3 × 25 mL). Dried over Na₂SO₄ and solvent removed *in vacuo*. Purified by flash chromatography, eluting with 5% ethyl acetate/hexanes, to give **17** (23 mg, 100%) as an off-white solid.

References

- 1. H.-J. Knoelker, K. R. Reddy, *Heterocycles*, **2003**, *60*, 1049-1052.
- 2. M. Yogo, C. Ito, H. Furukawa, Chem. Pharm. Bull., 1991, 39, 328-334.
- 3. S. C. Srivastava, U. Hornemann, Angew. Chem., 1976, 88, 87.
- 4. T. Martin, C. J. Moody, J. Chem. Soc., Perkin Trans. 1, 1988, 241-246.
- 5. T. S. Wu, T. Ohta, H. Furukawa, C. S. Kuoh, *Heterocycles*, **1983**, *20*, 1267-1269.
- 6. C. d. S. Lisboa, V. G. Santos, B. G. Vaz, L. N. C. de, M. N. Eberlin, S. J. Garden, J. Org. Chem., 2010, 76, 5264-5273.
- 7. V. Sridharan, M. A. Martin, J. C. Menendez, *Eur. J. Org. Chem.*, **2009**, 4614-4621.
- 8. P. Yates, K. Switlak, Can. J. Chem., 1990, 68, 1894-1900.
- 9. G. Mehta, K. Y. C. Sunil, K. T. Babu, *Tetrahedron Lett.*, 2010, 51, 5112-5115.

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

Eto	P Royal Society of Cher	mistry 2012 0 0 0 0	- 1 3 - 4 2 - 5 6 - 4 2 - 1	• 04	5	0 U 0
	130		→ 130 129 124 115			/ 16. 14.
international and	1/10/10/10/10/10/10/10/10/10/10/10/10/10	, 1944, North and a start of the	hallow and a state of the second state of the	nyistanayovihtastaqiivqidativviyaathiitgittasadiadi	and the subsection of the state of the state of the section of the	al total and a state providing their and the print of the state of the
		0 160 150 140) 100 90	80 70 60 50	40 30 20 10 ppm

EtO_

 O_2N

√199.38 √198.90		 	-134.77						748.93	48.78	48.10	16.20	
) 160	 ······ 140	······································	120	 ••••••••••••••••••••••••••••••••••••••	 90	~~~~``\~ 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••••••• ••••••	•••••• ••• 	······ 	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

ö	\bigvee	\lor	\bigvee	$\leq $	

0 205.31 204.85 0

136.67
136.63

 $\begin{array}{c}
64.59\\
64.20\\
64.20\\
49.62\\
49.62\\
43.41\\
43.25\\
43.25\\
\end{array}$

-14.59