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Table S1: Scientific Advisory Committee 
 
Member Affiliation Area of Expertise 
Bruce Blumberg, PhD University of California, 

Irvine 
Endocrine Disruption 

Terrence Collins, PhD Carnegie Mellon University Green Chemistry 
David Crews, PhD  University of Texas at Austin 

 
Endocrine Disruption 

Peter L. deFur, PhD 
 

Environmental Stewardship 
Concepts, LLC 
 

Endocrine disruption 

Andrea C. Gore, PhD  University of Texas at Austin Endocrine Disruption 
Lou Guillette, PhD 
 

Medical University of South 
Carolina 

Endocrine Disruption 

Jerrold Heindel, PhD National Institute of 
Environmental Health 
Sciences  

Endocrine disruption 

John Peterson Myers, PhD Environmental Health 
Sciences 

Endocrine disruption 

Kristina A. Thayer, PhD 
 

Center for the Evaluation of 
Risks to Human 
Reproduction, National 
Toxicology Program  

Endocrine Disruption 

Frederick S. vom Saal, PhD University of Missouri Endocrine Disruption 
John Warner, PhD Warner Babcock Institute 

for Green Chemistry 
Green Chemistry 

Cheryl S. Watson, PhD University of Texas Medical 
Branch 

Endocrine Disruption 

R. Thomas Zoeller, PhD  University of 
Massachusetts, Amherst  

Endocrine Disruption 
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Table S2: Tools available for in-house computational-based assessments of EDC 

activity 

Database Website Summary 

FDA Endocrine Disruptor 

Knowledge Base 

(EDKB) 

http://edkb.fda.gov/webstart/edkb/  Approximately 3300 records 
for over 1800 EDCs from 
different assays. Data can 
be cross-linked to other 
publicly available databases 
including TOXNET 

MOLE db http://michem.distat.unimib.it/mole_db/ Molecular Descriptors 
Database by Milano 
Chemometric and QSAR 
Research Group. The 
MOLE bd is a free online 
database of molecular 
descriptors calculated for 
243773 molecules. 

TOXNET http://toxnet.nlm.nih.gov/  Databases on toxicology, 
hazardous chemicals, 
environmental health, and 
toxic releases. 

VEGA 
http://www.vega-qsar.eu/  

Free platform for QSAR 

modeling 

CAESAR (Computer 
Assisted Evaluation of 
industrial chemical 
Substances According to 
Regulations) 

http://www.caesar-project.eu/  CAESAR was formed to 
develop QSAR models for 
REACH legislation. 
Five endpoints: 

 bioconcentration 
factor 

 skin sensitization 
 carcinogenicity 
 mutagenicity 
 developmental toxicity 

VirtualToxLab http://www.biograf.ch/  Tool for predicting the toxic 
potential (endocrine and 
metabolic disruption) of 
drugs, chemicals and 
natural products. It 
simulates and quantifies 
their interactions towards a 
series of proteins known to 
trigger adverse effects 
using automated, flexible 
docking combined with 
multi-dimensional QSAR 
(mQSAR). 

3D QSAR www.3d-qsar.com 3D QSAR Models Database 

Open3DQSAR www.open3dqsar.org Open-source tool aimed at 
pharmacophore exploration 
by high-throughput 
chemometric analysis of 
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molecular interaction fields 
(MIFs). 

EPA ACTor http://actor.epa.gov/actor/ ACToR aggregates data 
from over 500 public 
sources on over 500,000 
environmental chemicals 
searchable by chemical 
name, other identifiers and 
by chemical structure. 

NTP CEBS http://www.niehs.nih.gov/research/resources/d

atabases/cebs/index.cfm 

The CEBS database 
houses data on chemical 
effects on biological 
systems that have been 
deposited by academic, 
industrial and governmental 
laboratories. 

PubChem GeneGO http://www.genego.com/ Data mining tools and 
databases help to capture 
and define the underlying 
biology behind different 
types of high-throughput 
experimental data and 
understand the effects of 
small molecule drug 
compounds in human 
tissues. 

Comparative 

Toxicogenomics 

Database 

http://ctdbase.org/ CTD includes curated data 
describing cross-species 
chemical–gene/protein 
interactions and chemical– 
and gene–disease 
associations to illuminate 
molecular mechanisms 
underlying variable 
susceptibility and 
environmentally influenced 
diseases. 

Leadscope http://www.leadscope.com/ Incorporates chemically 
based data mining, 
visualization and advanced 
informatics techniques. 

OECD QSAR Toolbox http://www.oecd.org/document/54/0,3746,en_

2649_34379_42923638_1_1_1_1,00.html 

A software application 
designed to fill in gaps in 
(eco)toxicity data needed 
for hazard assessment of 
chemicals.  

OpenTox http://www.opentox.org/ Tools for the integration of 
data from various sources 
to generate and validate 
computer models for toxic 
effects 
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Table S3: Receptors and other endpoints that can be assessed using Tier 2 high-
throughput screening 
 

Androgen receptor 
Aryl hydrocarbon receptor 
Estrogen receptor alpha  
Estrogen receptor beta  
Farnesoid X receptor 
Glucagon receptor 
Glucocorticoid receptor (GR) 
Liver X receptor β (LXRβ)  
Melanin-concentrating hormone receptor 1 
(MCHR1) 
Membrane estrogen receptor (mER/GPR30) 
Mineralocorticoid receptor 
Peroxisome proliferator-activated receptor a, δ, γ 
(PPAR a, PPARδ , PPARγ) 
Pregnane X receptor
Prolactin receptor (PRLR)
Prostaglandin agonism through EP1 receptor 
Retinoic acid receptor (RAR) 
Retinoid X receptor α (RXRα) 
Retinoid-related orphan receptor gamma (RORγ) 
Thyroid hormone receptor b (TRb)  
Vasopressin V3 (V1B) Receptor 
Vitamin D receptor (VDR) 

 

Electronic Supplementary Material (ESI) for Green Chemistry
This journal is © The Royal Society of Chemistry 2012



5 

Table S4: Examples of current assays, biological endpoints, and references, 
available for Tier 3 screening 
 

Hypothalamic-Pituitary-Adrenal (Stress) Axis 
Assay Receptor Cell Type Endpoints Reference(s) 
Glucocorticoid 
responsive 
assay 

GR Human breast 
cancer cells (MDA-
MB-453) stably 
transfected with an 
MMTV.luciferase.neo 
reporter gene 
construct 

Activation of 
MMTV luciferase 
reporter occurs via 
treatment with 
glucocorticoids or 
androgen receptor 
agonists. 
Treatment with 
anti-androgens 
allows GR-
agonists to be 
examined 
separately 

[59] 

Hypothalamic-Pituitary-Gonadal (Reproductive) Axis 
Assay Receptor Cell Type Endpoints Reference(s) 
A-screen AR MCF-7 cells 

transfected with 
androgen receptor 
(MCF7-AR1) 

Estrogen-induced 
cell proliferation is 
inhibited by 
androgens 

[60] 

AR-CALUX AR U2-OS human 
osteosarcoma 
transfected with 
luciferase reporter 

Androgen receptor-
mediated luciferase 
reporter gene-
expression 

[61] 
 

Aromatase 
induction 

 Human adrenocortical 
carcinoma (H295R) 
Human placental 
choriocarcinoma  
(JEG-3) 
Human breast cancer 
(MCF-7) 

Aromatase activity 
as measured by 
conversion of 
androstenedione 
and induction of 
aromatase gene 
expression

[62] 

E-screen ER Human breast cancer 
cell line MCF-7 

Cell proliferation [63-68] 

E2SULT  Cell-free Inhibition of 
estrogen 
sulfotransferase 

[69] 

ER-CALUX ER T47D.Luc- human 
breast cancer cells 
transfected with 
luciferase reporter 

Estrogen receptor-
mediated luciferase 
reporter gene-
expression 

[70] 

EstrArray ER Human breast cancer 
cell line MCF-7 

Gene expression of 
estrogen-dependent 
genes

[71] 
 

PR – 
transactivation 
/transcription 
assay 

PR HEK 293T transfected 
with luciferase reporter 

PR-mediated 
luciferase reporter 
protein expression 
(luminescence) 

[72] 

PR-CALUX PR U2-OS human 
osteosarcoma 

progesterone 
receptor-mediated 

[73] 
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transfected with 
luciferase reporter 

luciferase reporter 
gene-expression 

Steroidogenesis  Human 
adenocarcinoma cell 
line (H295R) 

Interference with 
steroidogenesis- 
production of P4, T, 
and E2 

[74] 

YES, YAS, YPS, 
etc. 

ERα, ERβ, AR, 
PR, GR, MR, 
AhR. 

Yeast - 
Saccharomyces 
cerevisiae 

Hormone-mediated 
β-galactosidase 
reporter gene-
expression 

[75, 76] 

Hypothalamic-Pituitary-Thyroid Axis 
Assay Receptor Cell Type Endpoints Reference(s) 
Dendrite 
arborization 

TR Primary Purkinje cells TH-dependent 
dendrite arborization 
of cerebellar 
Purkinje cells 

[77-79] 

Iodide Uptake NIS NIS-transfected CHO 
or FRTL-5 cells 

Inhibition of iodide 
uptake 

[80]; [81] 

Neurite extension TR Rat granule cells 
primary culture 

Granule cell neurite 
extension 

[82] 

T-screen aka 
GH3 Cell Assay 

TR Rat pituitary tumor cell 
line GH3 

Cell proliferation [83], [84] 

TH-reporter 
assay 

TR GH3 pituitary cells 
transfected with TRE-
luciferase 

Thyroid hormone 
receptor-mediated 
luciferase reporter-
gene expression 

[85] 

TPO Inhibition Thyroid 
Peroxidase 

Cell-free  Inhibition of 
thyroperoxidase 

[86], [87] 

Retinoid/Peroxisome Proliferator-Activated Receptor Signaling Pathway 
Assay Receptor Cell Type Endpoints Reference(s) 
Adipocyte 
differentiation 
assay 

RXR/PPARg Mouse fibroblasts 
(preadipocyte cell lines 
3T3-L1 or C3H10T1/2) 

Differentiation into 
adipocytes, 
accumulation of lipid 
droplets 

[88-91] 

AhR activation AhR Human HepG2 
hepatoma  
 
Human MCF7 
 
Mouse  
H1L1.1c2 hepatoma  
 
Mouse  
MLEL1.1c1 hepatoma  

Arylhydrocarbon 
receptor-mediated 
luciferase reporter 
gene-expression 

[92] 

DR-CALUX AhR Rat hepatoma cell line 
(H4IIE) transfected 
with luciferase reporter 

Arylhydrocarbon 
receptor-mediated 
luciferase reporter 
gene-expression 

[93] 

PPAR 
Transactivation 
Reporter Assay 

PPAR Several cell lines are 
used for this 
commercially available 
assay 

PPAR-mediated 
luciferase reporter 
gene expression 

[94] 

Pregnane X 
Receptor 
Transactivation 

PXR Human hepatoma cell 
line HepG2  

PXR-mediated 
induction of 
CYP3A4- luciferase 

[95] 
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Reporter Assay reporter gene 
RAR 
Transactivation 
Reporter Assay 

RAR COS-7 cells 
 
 

RAR-mediated 
luciferase reporter 
activity 
(luminescence) 

 [96] 

RXR 
Transactivation 
Reporter Assay 

RXR HEK 293T transfected 
with luciferase reporter 

RXR-mediated 
luciferase reporter 
gene expression 

[97, 98] 

Non-genomic Actions of Steroid Mimetics 
Assay Receptor  Cell Type Endpoints Reference(s) 
ERK activation 
(or other MAPKs) 

 mER Pituitary cell line 
(GH3/B6/F10) 

Phosphorylation of 
ERK (or JNK or p38 
kinases) – 96-well 
plate immunoassay 

[99-101] 

ERK activation 
(or other MAPKs) 

 mER Breast cancer (MCF-7) Phosphorylation of 
ERK (or JNK or p38 
kinases) – 96-well 
plate immunoassay 

[102] 

ERK activation 
(or other MAPKs) 

mPR Human breast cancer 
cells MDA-MB-231 

Phosphorylation of 
ERK- detected by 
Western Blot 

[103] 

Gαi activation  mER Pituitary cell line 
(GH3/B6/F10) 

GTP-bound 
(activated) Gαi 
protein– 96-well 
plate immunoassay 

Watson, submitted 

G protein 
activation 

mPR Human breast cancer 
cells MDA-MB-231 

GTP-bound 
(activated) protein, 
cAMP levels 

[104, 105] 
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Table S5: Whole fish and amphibian assays 
 
Assay Fish species Endpoints Reference(s) 

Corticosteroid 
secretion 

Oncorhynchus mykiss Corticosteroid secretion in 
response to ACTH 

[106] 

Rapid 
developmental 
toxicity HTS 
(in Tier 2) 

Zebrafish Morphological endpoints 
(edema, bent body axes, 
pigmentation anomalies, and 
organ malformations) 

[40, 107-111] 

Fish sex 
development 
test 

Fathead minnow 

 

Medaka 

 

Zebrafish 

Designed to detect (anti-) 
estrogenic and (anti-) 
androgenic effects. Animals 
are exposed to test chemical 
before the onset of sexual 
differentiation.  

Vitellogenin induction in 
males/inhibition in females. 

Gonadal histopathology 

Hormone levels 

Sex ratio 

Development of intersex 

[112] 

 

[113] 

 

[114] 

Fish Two 
Generation 
Assay 

Fathead minnow 

Medaka 

Zebrafish 

Whole body, serum, tissue T4 
levels 

[115] 

Locomotion 
medium 
throughput 
assay (in Tier 
2) 

Zebrafish Can identify subtle 
developmental abnormalities 
between the nervous and 
musculoskeletal systems 

[116] 

Sex specific 
behavior 

Zebrafish Sex specific behaviors 
(aggressive: nipping, 
chasing, circling, avoiding, 
and reproductive: female 
association, spawning, 
chasing, and nipping) 

[117] 

Short-term 
reproduction 
assay/ 21-day 
fish assay 

Fathead minnow 

Medaka 

Designed to detect (anti-) 
estrogenic and (anti-) 
androgenic effects. Mature 
male and female fish will be 
monitored during a 21-day 
chemical exposure; survival, 
reproductive behavior, and 
secondary sexual 
characteristics will be 

[115], [118];  

[119], [120] 
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observed while fecundity and 
fertilization success will be 
monitored daily. At 
termination of the assay, 
measurements will be made 
of a number of endpoints 
reflective of the status of the 
reproductive endocrine 
system, including the GSI, 
gonadal histology, and 
plasma concentrations of 
vitellogenin. 

Transgenic 
reporter lines 

Zebrafish Current lines can detect 
estrogenic activity and 
aromatase induction. More 
transgenic lines are being 
developed. 

 

[41, 121, 122]

Assay Amphibian species Endpoints Reference(s) 

Corticosteroid 
secretion 

X. laevis 

Rana catesbeiana 

Corticosteroid secretion in 
response to ACTH 

[123] 

SEXDAMAX X. laevis 

X. tropicalis 

Sexual differentiation 

Metamorphosis 

[124] 

[125] 
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Table S6: Factors for considerationin fish EDC studies 

Species Family/ 
Distribution 

Adult Size Generation 
Time 

Sexually 
Dimorphic 

Blood 
Collection 

Clutch size Hatch time 

Fathead 
minnow 

Cyprinidae/ North 
America 

50 – 75mm 
2 – 5 g 

4 mos Yes Yes 50 – 200 
every 3 
days 

4 – 5 days 

Japanese 
medaka 

Adrianichthyidae/ 
Southeast Asia 

25 – 50mm 
0.7 – 0.8 g 

2 – 3 mos Yes No 10 – 30 
daily 

8 – 10 days 

Zebrafish Cyprinidae/ India 
and Myanmar 

40 – 50mm 
1.5 g 

2 – 3 mos Very little A few 
microliters 

>150 every 
5 – 10 days 

2 – 3 days 
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Table S7: Selecting species for amphibian assays 
Species Advantages Disadvantages 

Xenopus laevis Well-established laboratory 
model, with available molecular 
and endocrinology tools. 
 
Individual females can breed 
once per month, year round, and 
husbandry techniques are well-
established. 
  
It responds to thyroid hormone, 
estrogen, and androgens.  
 
Females have large clutch sizes 
(2000 eggs and higher in large 
adults) so fully replicated 
experiments can be conducted 
easily.  
 
Aquatic throughout its life cycle 
so embryos, larvae and adults 
can be treated by immersion. 

 

Some aspects of X. laevis biology 
may not be reflective of the 
majority of amphibians. For 
example, its putative sex-
determining gene (DMW) is 
apparently unique even in the 
genus.  
 
Larvae are not sex-reversed by 
androgens as in other species.  
 
Corticoids do not enhance larval 
development in vivo as in other 
species.  
 
Few amphibians are completely 
aquatic as adults.  
 
Generation time is about two years 
under ideal conditions, a long 
period for studies aimed at the full 
life cycle. 

 
Hyperolius argus Breeds repeatedly in the 

laboratory.  
 
Clear external markers for 
androgen, estrogen, and thyroid 
hormone effects.  
 
A single female may produce 
eggs once every few weeks. 
 
Breeding is spontaneous (unlike 
X. laevis) and does not require 
hormonal manipulation of adults. 

 

Small clutch size (about 200).  
 
More complicated husbandry. 

 

Lithobates pipiens L. pipiens is a well-studied 
species in the lab and the field.  
 
Widespread distribution in the 
northern U.S. allows for study in 
the field, along with closely 
related species in the southern 
US, some of which have ranges 
into Central America.  
  
In the laboratory, the sex ratio is 

Although newly collected females 
will breed in the laboratory, it is 
difficult to get them to cycle and 
produce regularly.  
 
There are no clear androgen or 
estrogen-dependent external 
markers at metamorphosis.  
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affected by androgens and 
estrogens.  
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Table S8: Examples of current assays, biological endpoints, and references, 
available for Tier 5 screening  
 
Assay Cell Type / Animal Model Endpoints Reference(s) 
Asthma Mouse Pups (17 days old) are tested for 

functional markers of asthma: 
ELISA for IgE antibodies, 
eosinophilic inflammation (by 
lavage) and airway hyper-
responsiveness by whole-body 
barometric plethysmography. 
Pregnant females are exposed to 
xenoestrogens in their drinking 
water. Pups (17 days old) are tested 
for functional markers for asthma: 
ELIZA for IgE antibodies, 
eosinophilic inflammation (by 
lavage) and  
 airway hyperresponsiveness by  
 whole-body barometric 
plethysmography. 

[126]  

Bone 
development 
assay 

Mouse Fetuses are examined at embryonic 
day 17 and calcification of the 
bones is determined by alcian 
blue/alizarin red incorporation 

[127] 

Brain sexual 
dimorphism 

Mouse / Rat Several regions of the brain are 
known to have sex-differences in 
the number and/or localization of 
specific populations of neurons (i.e. 
GABAergic cells, Tyrosine 
Hydroxylase-positive cells, etc.) 
Immunohistochemistry, in situ 
hybridization and/or RT-PCR 
analysis is used to measure these 
differences in specific brain nuclei. 

[128-130] 

Forced 
Breeding Assay 

Mouse Females are paired with control 
males (proven breeders) and 1) the 
time to mating is determined; 2) the 
number of pups delivered is 
determined.  

[131, 132] 

Kidney function 
assay 

Rat Blood urea nitrogen concentrations 
are measured using standard 
diagnostic kits. Levels of 
Malondialdehyde (a measure of 
lipid peroxidation) and Glutathione 
(an antioxidant) are measured in 
kidney extracts. 

[133, 134] 

Mammary gland 
carcinogenesis Rat Thin sections of mammary tissues 

are examined for neoplastic lesions 
(hyperplasias and DCIS) in animals 
with and without exposures to sub-
effective doses of chemical 
carcinogens. 

[135-138] 

Mammary gland Mouse – puberty & adulthood Morphological characteristics of [64-66] 
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development whole mount mammary glands. In 
pubertal animals, the number and 
density of TEBs (proliferative 
structures) and size of the tree are 
easily assessed. In adult animals, 
the density of epithelial structures 
(alveolar buds & terminal ends) are 
calculated using a grid 
superimposed on whole mounts. 

Maternal 
behavior assay 

Mouse Between birth and weaning, dams 
are assessed at several discrete 
periods to determine time spent 
with/away from, nursing, and 
licking/grooming the pups. 
Additional tests can include the time 
it takes dams to retrieve pups that 
are moved by an experimenter out 
of the nest. 

[139] 

Obesity/ 
metabolic 
syndrome 
assays 

Mouse / Rat 1) Body weight is monitored over 
several months. 

2) Fat deposition is determined 
with CT-scan (live) and fat pad 
dissection (at time of death) 

3) Fasting glucose/insulin levels 
are measured. Glucose and 
insulin tolerance tests are also 
performed. 

4) Food consumption and activity 
tests. 

5) RT-PCR analysis of brown and 
white fat. 

[140, 141]  

Prostate 
carcinogenesis 

Rat Adult animals are treated with a 
cocktail of estrogen & testosterone 
and the incidence of PIN lesions are 
determined from thin sections. This 
should be coupled with 
immunohistochemical analysis to 
quantify changes in specific cell 
types. 

[142, 143] 

Senesence 
(aging) assay 

Mouse / Rat 1) Mice/rats are kept until later 
adulthood (9-12 months) and 
then mated to determine 
whether their reproductive axis 
is still capable of responding. 
This can be done in males and 
females. 

2) Examination of methylation 
patterns in tissues where 
epigenetic changes are 
associated with aging (i.e. brain) 

3) Estrous cyclicity is observed 
throughout adulthood for 
changing patterns from normal 
cycles 

[54-56] 

Sexually 
dimorphic 

Mouse / Rat A number of behaviors are different 
between males and females 

[144-147] 
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behavior assays including play behaviors, anxiety, 
exploratory behaviors, and other 
social interactions. These assays 
determine whether the normal sex-
specific behaviors are retained. 
These tests can also be performed 
in castrated males, ovariectomized 
females, and adrenalectomized 
males & females to determine 
whether replacement with controlled 
levels of hormone can normalize 
abnormal behaviors. 

Tissue gene 
expression 
assay 

Mouse / Rat Hormone-sensitive genes have 
been identified for several tissues in 
rodents as well as other species. 
Simple RT-PCR analysis allows 
expression of these genes to be 
compared between 
exposed/unexposed individuals. 
Micro-array technology is also 
available for more widespread 
screening of a multitude of genes. 
Finally, epigenetic changes can be 
assessed for single genes of 
interest by examining methylation 
patterns. 

[148-150] 
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Table S9: Use of TiPED to detect endocrine disrupting activity of known EDCs 
 
 

Assay BPA Atrazine Perfluorinated 
compounds 

Phthalates Organotins Perchlorate 

        

Tier 1 
       

 
Chemical 
reactivity 

      

 
Physiochemical 
properties 

   [151]   

 
Docking 
modeling 

[152]   [153] [154]  

 
QSAR 

[155]    [156]  

Tier 2 
       

 
Tox21 qHTS 

[157] [157]  [157]   

Tier 3 
       

 
MCF7 cell 
proliferation 
assay 

[158]  [159] [160]   

 
Prostate cancer 
cell proliferation 
assay, PSA 
assay 

[161]    [162]  

 
3T3-L1 
adipogenesis 
assay 

[163]   [163] [89]  

 
GH3 T-screen 
assay 

[164]   [165]   

Tier 4 
       

 
Zebrafish rapid 
developmental 
toxicity HTS 

[107, 108] [109] [110, 111]  [40]  

 
Aquatic EDC 
reporter assays 

[42, 166, 
167] (ER) 
[43] (TH) 
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Medaka and 
fathead minnow 
reproductive 
assays 

[168] [169] [170] [171] [172]  

 
Xenopus 
metamorphosis 
assay 

[173]   [174]  [175] 

 
Xenopus sexual 
dimorphism 
assays 

[176] [177]  [178]  [179] 

 
Frog 
metamorphosis 
assay 

[173]   [174]  [175] 

 
H. argus color 
change assay 

      

 
Xenopus 
corticoid assay 

 [51]     

Tier 5 
       

 
Asthma assay 

[180]      

 
Brain sexual 
dimorphism 
assay 

[129]   [181] [182]  

 
Mammary 
carcinogenesis 
assay 

[138] [183]     

 
Mammary gland 
morphology 
assay 

[64] [184] [185, 186] [187]   

 
Maternal 
behavior assay 

[139]    [188]  

 
Obesity / 
Metabolic 
syndrome 
assays 

[189, 190] [191]  [192] [89]  

 
Prostate 
carcinogenesis 
assay 

[193]      
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Sexual 
dimorphism 
behavior assays 

[129]      

 
Tissue gene 
expression 
assay 

[194] [195] [196] [197] [198] [199] 
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