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Fig. S1 XRD patterns of the carbon materials derived by heating collagen waste at different 

temperatures and time. a) 500 oC for 8 h; b) 750 oC for 8 h; c) 1000 oC for 4 h; d)1000 oC for 8 h.  

 

 

 

The increase in the crystallinity of the carbon materials with the increase in temperature and time 

of heat treatment is evident from the gradual appearance and sharpening of both diffraction peaks 

and in particular (101) peak. 

 

a b

c d
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Table S1 Atomic composition of the carbon materials derived by heating collagen waste at 

different temperatures for 8 h characterized through XPS and elemental (CHNS) analysis 

Carbon materials  % C % O % N % H % Other  

elements 

(S and other 

impurities) 

Temperature 

(oC) 

Type of 

analysis 

 

500 

XPS 77.94 6.17 12.79 - 3.10 

CHNS 72.21 - 13.56 3.05 4.94 

 

750 

XPS 81.58 9.84 7.21 - 1.37 

CHNS 78.72 - 8.45 1.60 1.40 

 

1000 

XPS 79.68 15.41 2.86 - 2.05 

CHNS 78.56 - 3.12 0.55 1.41 

 

Elemental analysis of the collagen waste from goat skins revealed the presence of C, N, H and S 

close to 41.5, 14.7, 7.1 and 0.2%, respectively. The atomic composition of the carbon materials 

derived from different temperatures of treatment of collagen waste predominantly compose of 

carbon, oxygen and nitrogen in the range of 72-82, 6.2-15.4 and 2.9-13.6%, respectively as 

analyzed through XPS and elemental analysis (Table S1). The presence of other elements such as 

S and impurities (Na, Ca and Cl are the possible major impurities present in the collagen waste) 

in the range of 1.4-4.9% was also noted. It is evident that the amount of oxygen in the carbon 

materials increases while that of nitrogen decreases as the temperature of treatment of collagen 

waste increases. It is interesting to note that the amount of nitrogen in the carbon materials and 
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the decreasing trend of nitrogen as a function of the treatment temperature as analyzed from the 

XPS analysis is consistent with the values obtained from the CHNS analysis (Table S1). These 

results confirm the fact that the nitrogen and oxygen act as defects or (natural) doping atoms in 

the carbon matrix synthesized in this study.  

 

XPS Analysis 

The deconvolution of O(1s) peaks resulted in a strong peak at 530.9 eV and a broad peak at 

534.4 eV, which are assigned to C=O group and –O-COO- group, respectively for the carbon 

materials derived from low temperature treatment (500 oC) of collagen waste (Fig. 2b). Higher 

temperature (750 and 1000 oC) treatment of collagen waste leads to carbon materials with peaks 

at 531±0.1, 532.3±0.1 and 535.7±0.2 eV. The strong appearance of 531 eV peak in the carbon 

materials prepared from high temperature treatment suggests the prevalence of C=O and O=C-

OH groups in comparison to C-N bonds, as also envisaged in the analysis of C(1s) spectra. The 

peak at 532.3±0.1 eV can be assigned to C-OH group while the peak at 535.7±0.2 eV 

corresponds to either C-O-O- or N-O groups.1 The N(1s) peak was deconvoluted into three peaks 

in all the carbon materials (Fig. 2c). Low temperature treatment (500 oC) of collagen waste 

provides carbon materials with binding energies at 397.3, 399.2 and 401.9 eV. The lower energy 

contributions of the N(1s) spectrum (397.3 and 399.2 eV) are attributed to pyridine-like nitrogen 

atoms on the edge of graphene lattice only bonded to two C atoms and the broad and weak peak 

at 401.9 eV is assigned to highly coordinated N atoms substituting inner C atoms (quaternary N) 

on the graphene layers and bonded to three C atoms.2,3 Carbon materials derived from collagen 

waste when treated at higher temperature (750 and 1000 oC) exhibit peaks at 398.8±0.5, 
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400.9±0.1 and 403.2±0.2 eV, of which lower energy contribution is assigned to pyridine-like 

nitrogen atoms in graphitic lattice as above and higher energy contributions (400.9 and 403.2 eV) 

are assigned to highly coordinated N atoms substituting inner C atoms on the graphene layers. It 

is evident that the formation of graphitic nitrogen substituting inner C atoms on the graphene 

layers increases while the pyridinic nitrogen contribution decreases as the treatment temperature 

increases. Further, it is evident that the strength of peaks in N(1s) core spectra reduced by many 

folds when the temperature increased to 1000 oC. It is possible that certain nitrogen 

functionalities could be converted into nitrogen gas (N2) in anoxic conditions at high temperature 

and escape.4  

 

FT-IR Analysis 

Fig. S2 FT-IR spectrum of the carbon materials derived by heating collagen waste at different 

temperatures and time. a) 500 oC for 4 h. b) 500 oC for 8 h. c) 750 oC for 4 h. d) 750 oC for 8 h. 

e) 1000 oC for 4 h. f)1000 oC for 8 h. 
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FT-IR spectra of the carbon materials were analyzed using Perkin-Elmer spectrophotometer. The 

carbon samples were ground finely using KBr powder and pressed into pellets. The pellets were 

analyzed over the range of 400-4000 cm-1 at a resolution of 2 cm-1 with an average of 25 scans. 

 

The chemical bonding, functionalities and structure of the formed carbon materials can be traced 

through FT-IR spectroscopy (Fig. S2). The absorption bands corresponding to the conjugated 

structure occurs at lower frequencies. Especially, graphene like carbon-carbon and nitrogen 

substituted carbon double bonds such as C=C and C=N species (1550-1650 cm-1), carboxy COO- 

(~1410 cm-1) and alkoxy C-O (1000-1070 cm-1) bonds are observed in our carbon materials 

derived from different temperature treatment of collagen waste.5,6 It is interesting to mention that 

the appearance of carbonyl groups (C-O) is noted only in the carbon materials derived from high 

temperature treatment (750 and 1000 oC), which is in agreement with the XPS results where it 

has been shown that the formation of C=O groups and diminution of pyridinic nitrogen 

contribution increases as the temperature of treatment increases. The sharp peaks around 2900 

and 2855 cm-1 corresponds to the asymmetric C-H stretching of –CH3 and symmetric vibrations 

of –CH2 groups.7 All the spectra show a broad absorption band around 3200-3600 cm-1, which 

can be assigned to the N-H stretching of amine or O-H stretching of the hydroxyl groups.6 The 

intensity of the O-H stretching band increases gradually as the treatment temperature increases 

beyond 500 °C thereby providing further proof for the formation of C-OH groups in the carbon 

materials derived from higher temperature treatment (750 and 1000 oC).  
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SEM Analysis 

Fig. S3 (a) SEM micrograph and (b) particle size distribution of carbon material derived by 

heating collagen waste at 1000 oC for 8 h. 

 

 

a       b 

SEM micrographs of sonicated carbon samples show presence of agglomerated spheroidal 

nanocarbon particles with an average size of ~ 41 nm. This is comparable to the size observed 

for the polyhedral and spherical onion-like particles in HRTEM images (Fig. 3). 
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EPR Analysis 

 

Fig. S4 EPR spectra of select carbon materials derived by heating collagen waste at different 

temperatures and time. a) 500 oC for 4 h. b) 500 oC for 8 h. c) 1000 oC for 8 h. 
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Electron paramagnetic resonance measurements were recorded at room temperature (25±2 °C) 

using Bruker-EMX EPR spectrometer operated at a frequency of 9.521 GHz with modulation 
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amplitude of 3.00 G and a power level of ~3.20 mW. Diphenyl picryl hydrazine (DPPH) with a g 

value of 2.0036 (±0.0002) was used a standard to calibrate the magnetic field. 

The EPR measurement gives details on the structural transformation of the carbon materials 

formed during thermal treatment of collagen waste. EPR spectra of the select carbon materials 

obtained in this work are shown in Fig. S4. It is observed that all the carbon materials derived 

from different temperature and time exhibit a slightly broad EPR signal with g-value ranging 

from 1.999 to 2.0322. Even at low temperature treatment (500 oC) for 4 h, the g-value is not far 

from the value of free spin of g=2.0023, indicating a paramagnetic behavior. The EPR signal of 

the carbon material becomes broader as the temperature increases, implying the gradual 

conversion of the spin system towards the nature of conduction carriers.8 In addition, the g-value 

is found to increase as the temperature and heating time increases. For the carbon material 

derived from high temperature and longer duration of treatment (1000 oC for 8 h), the EPR signal 

is broader and noisy with a very high g-value implying the presence of conduction π-electrons 

delocalized over the aromatic rings, suggesting a ferromagnetic behavior. Such observation has 

been made earlier for the polyhedral carbon onions.9 This shows that the EPR results are in good 

agreement with the HRTEM and magnetization results.  
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Fig. S5. Room temperature M(H) curve of pristine collagen waste probed using a vibrating 

sample magnetometer 
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