Supporting Information for

Mechanosynthesis of nitrosobenzenes: a proof-of-principle study in combining solvent-free synthesis with solvent-free separations

Igor Huskić, Ivan Halasz, Tomislav Friščić and Hrvoj Vančik

Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102a, 10002 Zagreb (Croatia) Fax: (+) 385 1 460 6401 E-mail: ihalasz@chem.pmf.hr

> T. Friščić Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 2K6 Montréal (Canada)

Table S1. Synthesis results depending upon experimental conditions (neat, LAG or NaHCO₃) and milling time. Green background highlights the optimal conditions. Different synthesis outcomes when the synthesis is performed in the same conditions is the consequence of relatively small reagent quantities resulting in large relative errors during manipulation. Also, as is well known, syntheses may not be strictly reproducible.

derivative	yield	purity	Method	time/min
<i>p-</i> Br	0.10	0.16	LAG, MeOH	10
<i>p</i> -Br	0.10	0.78	LAG, CH3CN	10
<i>p</i> -Br	0.03	0.15	LAG, CHCl3	10
<i>p</i> -Br	0.05	0.19	LAG, CHCl3	5
<i>p</i> -Br	0.06	0.29	LAG, hexane	20
<i>p</i> -Br	0.06	0.18	LAG, hexane	30
<i>p</i> -Br	0.45	0.69	neat, NaHCO₃	20
<i>p</i> -Br	0.62	0.74	neat, NaHCO₃	20
<i>p</i> -Br	0.80	0.90	neat, NaHCO₃	20
<i>p</i> -Br	0.11	0.73	neat	10
<i>p</i> -Br	0.16	0.62	neat	10
<i>p</i> -Br	0.17	0.82	neat	5
<i>p</i> -Br	0.12	0.31	neat	20
<i>p</i> -Br	0.13	0.42	neat	30

<i>p</i> -I	0.85	0.92	NaHCO ₃	20
p-I	0.11	0.73	neat	20
p-I	0.13	0.89	neat	10
p-I	0.20	0.84	LAG, MeOH	20
<i>p</i> -I	0.18	0.88	LAG, MeOH	10
p-I	0.13	0.87	LAG, MeCN	20
p-I	0.16	0.81	LAG, MeCN	10
p-I	0.07	0.29	LAG, CHCl₃	20
p-I	0.16	0.86	LAG, CHCl₃	10
<i>p</i> -Cl	0.28	0.50	neat, NaHCO₃	20
p-Cl	0.44	0.53	neat, NaHCO₃	20
p-Cl	0.70	0.80	neat, NaHCO ₃	20
p-Cl	0.48	0.59	neat, NaHCO₃	20
p-Cl	0.06	0.81	LAG, MeCN	5
p-Cl	0.09	0.69	neat	5
<i>p</i> -Cl	0.07	0.61	neat	10
<i>p</i> -Me	0.52	0.69	neat, NaHCO ₃	20
<i>p</i> -Me	0.31	0.34	neat, NaHCO ₃	20

<i>p</i> -NO2	N/A	0.88	LAG, MeCN	35
<i>p</i> -NO2	0.26	0.90	neat	30
<i>p</i> -NO2	0.29	0.84	neat	60

Figure S1. Isothermal (25 °C) mass loss during dimerisation of *p*-bromonitrosobenzene showing sublimation of the material.

Figure S2. ¹H NMR spectra of the reaction mixture of *p*-iodoaniline and *Oxone* prior to sublimation.

Atom	Shift	Atom	Shift
a	102.65	a'	105.39
b	138.69	b'	138.74
с	124.87	c'	121.80
d	147.85	ď	164.17

Table S2. ¹³C NMR shifts according to Fig S4.

Figure S4. ¹H NMR spectra of the reaction mixture of *p*-bromoaniline and *Oxone* prior to sublimation.

Figure S5. ¹³C NMR spectra of reaction mixture of *p*-bromoaniline and *Oxone* prior to sublimation.

Atom	Shift	Atom	Shift
a	129.99	e	132.06
b	132.63	f	132.41
с	125.02	g	127.24
d	147.07	h	/
a'	131.73	i	142.61
b'	132.71	j	126.50
c'	122.14	k	/
d'	163.84	1	131.99

Table S3. ¹³C NMR shifts according to Fig. S6.

^{ppm (f1)} Figure S6. ¹H NMR spectra of the reaction mixture of *p*-chloroaniline and *Oxone* prior to sublimation.

Atom	Shift	Atom	Shift
a	141.40	e	/
b	129.59	f	129.04
с	124.95	g	123.71
d	/	h	/
a'	142.50	i	/
b'	129.69	j	127.08
c'	122.19	k	128.98
d'	163.74	1	/

Table S4. ¹³C NMR shifts according to Fig. S8.

Figure S8. ¹H NMR spectra of the reaction mixture of *p*-toluidine and *Oxone* prior to sublimation.

Atom	Shift	Atom	Shift
а	145.95	e	141.97
b	129.80	f	129.32
с	123.52	g	122.15
d	/	h	/
a'	147.28	i	/
b'	/	j	125.66
c'	121.301	k	129.30
d'	/	1	141.86

Table S5. ¹³C NMR shifts according to Fig. S10.

Figure S10. ¹H NMR spectra of the reaction mixture of *p*-nitroaniline and Oxone prior to sublimation.

Atom	Shift	Atom	Shift
а	147.45	e	149.95
b	126.31	f	124.56
a'	147.78	g	123.87
b'	125.48	h	/
c'	121.32	i	/
ď	162.47	j	124.89
		k	124.40
		1	151.35

Table S6. ¹³C NMR shifts according to Fig. S12.

Figure S12. ¹H NMR spectrum of the sublimed *p*-iodonitrosobenzene.

Figure S13. ¹H NMR spectrum of the sublimed *p*-bromonitrosobenzene.

Figure S15. ¹H NMR spectrum of the sublimed *p*-nitronitrosobenzene.

Figure S16. ¹H NMR spectrum of the sublimed *p*-methylnitrosobenzene.