Supplementary Information

Isopropenyl acetate, a remarkable, cheap and acylating agent of amines under solvent- and catalyst-free conditions: a systematic investigation.

Romina Pelagalli,*^a Marta Feroci,^a Isabella Chiarotto^a and Stefano Vecchio^a

^a Dept. S.B.A.I., Sapienza University of Rome, via del Castro Laurenziano, 7, I-00161 Rome, Italy. Fax: +39 06 49766749; Tel: +39 06 49766563; E-mail: <u>romina.pelagalli@uniroma1.it</u>

Table of Contents

General Information

Page S 2

Experimental procedures and characterization of acetamides Page S 2

Copies of ¹H and ¹³C NMR spectra of acetamides Page S 7

General Information

Chemical materials were purchased and used without further purifications, unless otherwise specified. Yields refer to chromatographically and spectroscopically homogeneous materials, unless otherwise stated. All reagents purchased from commercial sources were used as received. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light (254 nm and 365 nm) as the visualizing agent and an ethanolic solution of phosphomolybdic acid and heat as developing agents.

NMR spectra were recorded on Bruker AC 200 (200 and 50.3 MHz) instrument and calibrated using residual undeuterated solvent as an internal reference (peak at 7.26 ppm in ¹H NMR and peak at 77 ppm in ¹³C NMR in the case of CDCl₃). The following abbreviations were used to designate multiplicities: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, quin=quintuplet, sext=sextet, sep=septet, br=broad, dd=double-doublet, ddd=double-double-doublet. Chemical shifts were expressed in ppm and coupling constant (*J*) in Hz. The peak at 2.17 ppm in some of ¹H NMR spectra is acetone.¹

Experimental procedures and characterization of acetamides

GP.1 General procedure for acetylation of amines

In a typical procedure, in a capped vessel the isopropenyl acetate (4 mmol) and a suitable amine (1 mmol) were mixed. The reaction mixture was stirred for 3h at 60°C and then was transferred in a round-bottomed flask and concentrated under reduced pressure in order to eliminate either the isopropenyl acetate in excess and acetone to obtain the crude product. This was analyzed by ¹H and ¹³C NMR and their NMR spectral data were consistent with those available in the literature. Concerning optically active amines, it was measured the optical rotation by polarimeter and also these data were in full agreement with those reported in the literature. Starting materials and reagents used in this study were obtained commercially from Aldrich, Acros, Fluka and were used without purification.

GP.2 Characterization of acetamides

N-benzylacetamide²

¹H NMR (200MHz, CDCl₃) δ 2.00 (s, 3H), 4.41 (d, *J* = 5.7 Hz, 2H), 6.01 (br s, 1H), 7.25-7.32 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 170.21, 138.17, 128.30, 127.41, 43.24, 22.69.

N-phenethylacetamide³

¹H NMR (200MHz, CDCl₃) δ 1.94 (s, 3H), 2.17 (s, 3H), 2.82 (t, *J* = 6.9 Hz, 2H), 3.51 (q, *J* = 6.9 Hz, 2H), 5.66 (br s, 1H), 7.10-7.40 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 170.37, 138.67, 128.40, 128.25, 126.12, 40.54, 35.28, 22.79.

N-(3-phenyl-propyl)acetamide⁴

¹H NMR (200MHz, CDCl₃) δ 1.75-1.97 (m, 5H), 2.66 (t, J = 7.3 Hz, 2H), 3.29 (q, J = 7.1 Hz, 2H), 5.60 (br s, 1H), 7.05-7.40 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 170.40, 141.16, 128.06, 128.00, 125.59, 38.90, 32.90, 30.71, 22.72.

$$\sim$$

hanamide⁵

¹H NMR (200MHz, CDCl₃) δ 0.91 (t, J = 7.2 Hz, 3H), 1.20-1.55 (m, 4H), 1.97 (s, 3H), 2.17 (s, 2H), 3.23 (q, J = 6.8 Hz, 2H), 5.68 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 170.42, 38.97, 31.11, 22.54, 19.70, 13.33.

N 3e N-propylacetamide⁶

¹H NMR (200MHz, CDCl₃) δ 0.92 (t, J = 7.4 Hz, 3H), 1.52 (sext, J = 7.2 Hz, 4H), 1.98 (s, 3H), 2.18 (s, 2H), 3.20 (q, J = 5.9 Hz, 2H), 5.62 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 170.41, 40.68, 22.11, 21.95, 10.72.

 \mathbb{N}^{3f} *N*-methylacetamide⁷

¹H NMR (200MHz, CDCl₃) δ 1.94 (s, 3H), 2.74 (d, J = 4.8 Hz, 3H), 5.65 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ171.28, 25.77, 22.27.

$\searrow_{\rm H}^{\rm O}$ ^{3g} *N-tert*-buthylethanamide⁸

¹H NMR (200MHz, CDCl₃) δ 1.33 (s, 9H), 1.91 (s, 3H), 5.27 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.46, 51.01, 28.72, 24.37.

$\downarrow_{\mathsf{N}} \stackrel{\mathsf{O}}{\vdash} _{\mathsf{N}} ^{\mathsf{3h}} N \text{-isopropylethanamide}^9$

¹H NMR (200MHz, CDCl₃) δ 1.13 (d, J = 6.5 Hz, 6H), 1.93 (s, 3H), 4.07 (sep, J = 6.5 Hz, 1H), 5.45 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.46, 41.06, 23.01, 22.33.

Cyclopentyl acetamide¹⁰

¹H NMR (200MHz, CDCl₃) δ 1.22-1.83 (m, 6H), 1.86-2.18 (m, 5H), 4.18 (sext, J = 7.3 Hz, 1H), 5.50 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.88, 50.91, 32.59, 23.45, 22.90.

Cyclohexyl acetamide¹¹

¹H NMR (200MHz, CDCl₃) δ 0.97-2.18 (m, 10H), 3.62-3.91 (m, 1H), 5.30-5.64 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.24, 48.01, 32.75, 25.22, 24.69, 23.06.

Cyclohexanemethyl acetamide¹²

¹H NMR (200MHz, CDCl₃) δ 0.75-1.35 (m, 6H), 1.57-1.87 (m, 5H), 1.98 (s, 3H), 3.08 (t, *J* = 6.4 Hz, 2H), 5.67 (br s, 1H); ¹³C NMR (75MHz, CDCl₃) δ 170.34, 45.51, 37.43, 30.50, 26.01, 25.45, 22.64.

N-(S)-phenylpropyl)acetamide¹³

¹H NMR (200MHz, CDCl₃) δ 0.87 (t, *J* = 7.3 Hz, 3H), 1.72-2.04 (m, 5H), 4.87 (q, *J* = 7.7 Hz, 1H), 5.91 (br d, 1H), 7.15-7.40 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 169.60, 142.27, 128.23, 126.88, 126.46, 54.81, 28.97, 22.91, 10.64.

N-(**R**)1-naphthalen-2-yl)acetamide¹⁴

¹H NMR (200MHz, CDCl₃) δ 1.67 (d, J = 6.7 Hz, 3H), 1.97 (s, 3H), 5.62-5.78 (br s, 1H), 5.93 (dt, J = 6.7, 14.8 Hz, 1H), 7.44-7.62 (m, 4H), 7.75-7.91 (m, 2H), 8.05-8.15 (m, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.04, 138.43, 133.63, 130.80, 128.53, 127.87, 126.19, 125.54, 125.01, 123.15, 122.28, 44.35, 22.83, 20.64.

N-(pyridin-4-yl)acetamide¹⁵

¹H NMR (200MHz, CDCl₃) δ 2.21 (s, 3H), 7.54 (d, J = 5.2 Hz, 2H), 8.47 (d, J = 5.2 Hz, 2H), 8.9 (bs, 1H); ¹³C NMR (75MHz, CDCl₃) δ 169.75, 150.20, 145.94, 113.81, 24.61.

N-benzyl-*N*-methylacetamide¹⁶

Spectroscopic data of this amide were obtained as a mixture of two rotational isomers

¹H NMR (200MHz, CDCl₃) δ 2.16 (s, 6H), 2.4 (minor isomer, s, 3H), 2.92 (major isomer, s, 3H), 4.53 (minor isomer, s, 2H), 4.59 (major isomer, s, 2H), 7.12-7.42 (m, 5); ¹³C NMR (75MHz, CDCl₃) δ 170.22, 169.94, 136.71, 135.95, 128.21, 127.85, 127.25, 126.87, 126.59, 125.63, 53.44, 49.78, 34.79, 32.92, 21.05, 20.69.

N,*N*-dibenzylacetamide¹⁷

¹H NMR (200MHz, CDCl₃) δ 2.18 (s, 3H), 4.45 (s, 2H), 4.61 (s, 2H), 7.15-7.42 (m, 10H); ¹³C NMR (75MHz, CDCl₃) δ 170.78, 139.73, 136.93, 136.01, 128.63, 128.27, 128.06, 127.93, 127.86, 127.30, 127.09, 126.65, 126.01, 52.65, 50.30, 47.54, 21.35.

¹H NMR (200MHz, CDCl₃) δ 0.91 (t, *J* = 7.3 Hz, 6H), 1.26-1.59 (m, 8H), 2.17 (s, 3H), 2.59 (t, *J* = 7.3 Hz, 4H); ¹³C NMR (75MHz, CDCl₃) δ 169.13, 48.85, 31.20, 19.82, 13.24.

Piperidine acetamide¹⁹

¹H NMR (200MHz, CDCl₃) δ 1.45-1.59 (m, 6H), 2.07 (s, 3H), 3.32-3.42 (m, 2H), 3.47-3.75 (m, 2H); ¹³C NMR (75MHz, CDCl₃) δ 168.65, 47.24, 42.28, 26.19, 25.27, 24.23, 21.25.

Morpholine acetamide²⁰

¹H NMR (200MHz, CDCl₃) δ 2.09 (s, 3H), 3.42-3.50 (m, 2H), 3.56-3.71 (m, 6H); ¹³C NMR (75MHz, CDCl₃) δ 168.67, 66.16, 65.97, 46.05, 41.15, 20.54.

^a2-aminobenzylacetamide²¹

¹H NMR (200MHz, CDCl₃) δ 1.97 (s, 3H), 4.16 (br s, 2H), 4.34 (d, *J* = 6.2 Hz, 2H), 6.00 (br s, 1H), 6.60-6.72 (m, 2H), 6.95-7.15 (m, 2H); ¹³C NMR (75MHz, CDCl₃) δ 170.64, 145.33, 130.40, 128.99, 121.85, 117.56, 115.54, 40.57, 22.80.

ОН 76

он ^{7b} N-(4-hydroxybutyl)acetamide²²

¹H NMR (200MHz, CDCl₃) δ 1.53-1.65 (m, 4H), 1.97 (s, 3H), 2.10 (br, s, 2H), 3.27 (q, J = 5.9 Hz, 2H), 3.67 (t, J = 5.9 Hz, 2H), 5.89 (br s, 1H); ¹³C NMR (75MHz, CD₃COCD₃) δ 172.20, 62.72, 40.61, 31.51, 27.46, 23.68.

он ^{7с} N-(3-hydroxypropyl)acetamide²³

¹H NMR (200MHz, CDCl₃) δ 1.60-1.74 (m, 2H), 1.99 (s, 3H), 3.40 (q, J = 6.2 Hz, 2H), 3.63 (t, J = 5.7 Hz, 2H), 5.21 (br s, 1H), 6.11 (br s, 1H); ¹³C NMR (75MHz, CD₃COCD₃) δ 172.76, 60.39, 37.71, 33.68, 23.59.

N-(2-Hydroxy-2-phenylethyl)acetamide²⁴

¹H NMR (200MHz, CDCl₃) δ 1.98 (s, 3H), 3.30 (ddd, *J* = 4.9, 8.0, 14.0 Hz, 2H), 3.67 (ddd, *J* = 3.3, 6.9, 14.0 Hz, 1H); 4.83 (dd, *J* = 3.3, 8.0 Hz, 1H), 6.12 (br s, 1H), 7.27-7.42 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 171.78, 141.62, 128.22, 127.70 125.64, 72.84, 47.28, 22.70.

N-[(1*R*)-(2-Hydroxy-1-phenylethyl)]acetamide²⁵

¹H NMR (200MHz, CDCl₃) δ 2.04 (s, 3H), 2.67 (br s, 1H), 3.86 (dd, J = 1.9, 4.9 Hz, 2H), 5.10-5.47 (m, 1H), 6.33 (br s, 1H), 7.25-7.41 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 171.78, 141.62, 128.22, 125.64, 72.84, 47.28, 22.70.

2S-acetamido-3-phenylpropan-1-ol²⁶

¹H NMR (200MHz, CDCl₃) δ 1.94 (s, 3H), 2.85 (d, *J* = 7.2 Hz, 2H), 3.18 (br s, 1H), 3.54 (dd, *J* = 5.1, 11.1 Hz, 1H), 3.66 (dd, *J* = 3.7, 11.1 Hz, 1H), 4.05-4.25 (m, 1H), 6.02 (br d, 1H), 7.15-7.35 (m, 5H); ¹³C NMR (75MHz, CDCl₃) δ 170.77, 136.61, 129.15, 128.59, 126.62, 63.92, 52.83, 36.93, 23.33.

N-butyl-2-hydroxyethylacetamide²⁷

¹H NMR (200MHz, CDCl₃) δ 0.93 (t, *J* = 7.1 Hz, 3H), 1.20-1.64 (m, 4H), 1.97 (s, 3H), 2.10 (s, 3H), 3.00-3.35 (m, 3H), 3.49 (t, *J* = 5.3 Hz, 2H), 3.73 (t, *J* = 4.9 Hz, 2H); ¹³C NMR (75MHz, CDCl₃) δ 172.15, 61.50, 50.05, 49.23, 30.71, 21.14, 19.77, 13.58.

S11

S13

S21

S31

- ¹ H. E. Gottlieb, V. Kotlyar, and A. Nudelman J. Org. Chem., 1997, 62, 7512.
- ² Chien-Tien Chen, Jen-Huang Kuo, V. D. Pawar, Y. S. Munot, Shieu-Shien Weng, Cheng-Hsiu Ku, and Cheng-Yuan Liu J. Org. Chem., 2005, **70**, 1188.
- ³ N. Sakai, T. Moriya, and T. Konakahara J. Org. Chem., 2007, **72**, 5920.
- ⁴ D. Gao, F. Scholz, H. G. Nothofer, W. E. Ford, U. Scherf, J. M. Wessels, A. Yasuda, and F. von Wrochem J. Am. Chem. Soc., 2011, **133**, 5921.
- ⁵ L. R. Steffel, T. J. Cashman, M. H. Reutershan, and B. R. Linton J. Am. Chem. Soc., 2007, **129**, 12956.
- ⁶ Y. Watanabe, Y. Tsuji, T. Kondo, and R. Takeuchi J. Org. Chem., 1984, 49, 4455.
- ⁷ J. L. Barneto, M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez and J. C. Palacios Org. Biomol. Chem., 2010, **8**, 857.
- ⁸ L. R. Steffel, T. J. Cashman, M. H. Reutershan, and B. R. Linton J. Am. Chem. Soc., 2007, **129**, 12956; R. Das, and D. Chakraborty Synthesis 2011, 1621; Chien-Tien Chen, Jen-Huang Kuo, V. D. Pawar, Y. S. Munot, Shieu-Shien Weng, Cheng-Hsiu Ku, and Cheng-Yuan Liu J. Org. Chem., 2005, **70**, 1188.
- ⁹ L. R. Steffel, T. J. Cashman, M. H. Reutershan, and B. R. Linton J. Am. Chem. Soc., 2007, **129**, 12956.
- ¹⁰ Q. Michaudel, D. Thevenet, and P. S. Baran J. Am. Chem. Soc., 2012, **134**, 2547.
- ¹¹ C. Cazorla, E. Métay, and M. Lemaire *Tetrahedron*, 2011, **67**, 8615.
- ¹² H. Süess, and M. Hesse *Helv. Chim. Acta*, 1979, *62*, 1040.
- ¹³ Mahn-Joo Kim, Won-Hee Kim, K. Han, Y. K. Choi, and J. Park Org. Lett., 2007, 9, 1157.
- ¹⁴ G. Li, and Jon C. Antilla Org. Lett., 2009, **11**, 1075; N. Mrsić, A. J. Minnaard, B. L. Feringa, and J. G. de Vries J. Am. Chem. Soc., 2009, **131**, 8358.
- ¹⁵ N. C. Singha, and D. N. Sathyanarayana J. Chem. Soc., Perkin Trans. 2, 1997, 157.
- ¹⁶ S. Hanada, A. Yuasa, H. Kuroiwa, Y. Motoyama, and H. Nagashima *Eur. J. Org. Chem.*, 2010, 1021.
- ¹⁷ Shaolin Zhou, K. Junge, D. Addis, S. Das, and M. Beller Angew. Chem. Int. Ed., 2009, 48, 9507.
- ¹⁸ M. G. Voronkov, I. P. Tsyrendorzhieva, and V. I. Rakhlin Russ. J. Org. Chem., 2008, 44, 481.
- ¹⁹ Y. Ishii, M. Takeno, Y. Kawasaki, A. Muromachi, Y. Nishiyama, and S. Sakaguchi J. Org. Chem., 1996, **61**, 3088.
- ²⁰ K. P. Dhake, Z. S. Qureshi, R. S. Singhal, and B. M. Bhanage *Tetrahedron Lett.*, 2009, **50**, 2811.
- ²¹ M. Chakrabarty, A. K. Chakravarty, and S. C. Pakrashi *Heterocycles*, 1983, 20, 445.
- ²² A. Marszak-Fleury, and J. Laroche Bull. Soc. Chim. Fr. 1963, 1270.
- ²³ S. Vokkaliga, J. Jeong, W. R. LaCourse, and A. Kalivretenos *Tetrahedron Lett.*, 2011, **52**, 2722.
- ²⁴ L. Veum, S. R. M. Pereira, J. C. van der Waal, and U. Hanefeld Eur. J. Org. Chem., 2006, 1664.
- ²⁵ T. Matsui, T. Kondo, Y. Nishita, S. Itadani, S. Nakatani, N. Omawari, M. Sakai, S. Nakazawa, A. Ogata, H. Mori, K. Terai, W. Kamoshima, H. Ohno, T. Obata, H. Nakai, and M. Toda *Bioorg. Med. Chem.*, 2002, **10**, 3757.
- ²⁶ D. Das, S. Roy, and P. Kumar Das Org. Lett., 2004, 6, 4133; N. A. Boland, M. Casey, S. J. Hynes, J. W. Matthews, and M. P. Smyth J. Org. Chem., 2002, 67, 3919.
- ²⁷ I. Okada Bull. Chem. Soc. Jpn., 1970, **43**, 2591.