Lanthanide Replacement in Organic Synthesis: Luche-Type Reduction of α , β -Unsaturated Ketones in the Presence of Calcium triflate

Nina V. Forkel,^a David A. Henderson^b and Matthew J. Fuchter^a*

*

^aImperial College London, South Kensington Campus, Department of Chemistry, London SW7 2AZ, United Kingdom E-mail: m.fuchter@imperial.ac.uk
^bChemical Research and Development, Pfizer Ltd., Sandwich CT13 9NJ, United Kingdom

Electronic Supplementary Information

Materials and Methods	2
Experimental Procedures	3
NMR Spectra	11
GC Spectra	19
References	24

Materials and Methods

All reagents and solvents were supplied from commercial sources (SigmaAldrich, ABCR, and ACROS) and used as received unless otherwise stated. For not commercially available substrates and calcium salts see procedures below. THF was distilled from Na/benzophenone. Reactions requiring anhydrous conditions were conducted in flame-dried glassware under dry N₂.

Reactions were monitored by analytical thin-layer chromatography (TLC) performed on E. Merck silica gel 60 F254 plates (0.25 mm). TLC plates were visualised using UV light (254 nm) and stain solution (KMnO₄ in H₂O). Purification of compounds was achieved by column chromatography using Merck Flash Silica Gel 60 (230-400 mesh). Solvents were removed by rotary evaporation and compounds further dried under vacuum if necessary.

¹H and ¹³C NMR spectra were recorded on a Bruker Advance 400 spectrometer at 400 MHz. Chemical shifts (δ H) are quoted in ppm (parts per million) and referenced to CDCl₃ residual chloroform signal ¹H NMR δ = 7.26, ¹³C NMR δ = 77.0. Regioselectivity of all reaction conditions and substrate screens were detected by Perkin Elmer 8600 gas spectrometer apparatus with manual injector and FID detector.

Experimental procedures

General procedure for 1,2-reduction under Luche conditions (method A)

To [starting material] (0.80 mmol) in MeOH (0.4 M) and internal standard (*n*-decane) was added [calcium salt] (0.80 mmol) and stirred for 5 min. MBH₄ (M = Li, Na, Ca, and NBu₄) (0.80 mmol) was added in one portion at [temperature] and the resulting white suspension or solution was stirred for [time] at [temperature]. A sample was taken out of the reaction mixture, quenched with H₂O, diluted with MeOH (HPLC grade), and injected into the GC.

General procedure for 1,2-reduction under modified conditions (method B)

To a suspension of MBH₄ (M = Na, Ca, and K) (1.0 mmol) in [solvent¹] (0.33 M) was added in one portion [calcium salt] (0.25 mmol) and [starting material] (0.25 mmol) in [solvent²] (solvent¹/solvent² = 12/1). The reaction mixture was stirred for [time] at [temperature]. A sample was taken out, quenched with H₂O, diluted with MeOH (HPLC grade), and injected into the GC.

General procedure to determine the substrate scope under Ca(OTf)₂-based conditions (method C)

To a suspension of NaBH₄ (12.0 mmol) in THF (36 mL) was added in one portion Ca(OTf)₂ (3.0 mmol) and enone (3.0 mmol) in MeOH (3 mL). The reaction mixture was stirred for 30 min at rt until consumption of the starting material (monitored by TLC). The reaction mixture was quenched with H₂O (15 mL) and the aqueous phase was extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO₄ and the solvent was evaporated under reduced pressure. The crude material was purified by flash chromatography on silica to isolate the desired product.

Calcium salts

$$Ca^{2+} \begin{pmatrix} 0 \\ -O-S \\ 0 \\ 0 \end{pmatrix}_2$$

Calcium 4-methylbenzenesulfonate: $CaCO_3$ (1.0 g, 10 mmol) and *p*-toluenesulfonic acid (3.8 g, 20 mmol) were dissolved in MeOH (anhydrous, 50 ml) and stirred at rt. After 10 min a white

solid precipitated. The solvent was removed by filtration and the residue was washed with MeOH (2 × 10 mL) and Et₂O (10 mL) and dried under high vacuum overnight to obtain a white solid (3.9 g, 10 mmol, 99 %). ¹H NMR (400 MHz, DMSO-d₆) δ 2.29 (3 H, s, Me), 7.13 (2 H, d, *J* = 7.9 Hz, H_{aromat.}), 7.50 (2 H, d, *J* = 8.1 Hz, H_{aromat.}); ¹³C NMR (100 MHz, DMSO-d₆) δ 21.3, 126.0, 128.7, 138.7, 145.4; IR v_{max}/cm⁻¹ 655, 759, 828, 1011, 1091, 1140, 1177, 1252, 1480, 1583; Elemental Analysis found: C, 43.85; H, 3.57 C₁₄H₁₄CaO₆S₂ requires: C, 43.96; H, 3.69 %.

0 °C. After removing the ice bath the white suspension was stirred at rt for another 3 h. The reaction mixture was filtered and the residue was washed with MeOH (2 × 10 mL), Et₂O (10 mL), and dried under high vacuum overnight obtaining a white solid (2.6 g, 6.0 mmol, 60 %). ¹H NMR (400 MHz, DMSO-d₆) δ 7.40 (2 H, d, *J* = 8.5 Hz, H_{aromat}), 7.61 (2 H, d, *J* = 8.5 Hz, H_{aromat}); ¹³C NMR (100 MHz, DMSO-d₆) δ 128.0, 128.3, 133.7, 147.2; IR v_{max}/cm⁻¹ 659, 760, 828, 1011, 1062, 1140, 1177, 1480, 1583; Elemental Analysis found: C, 33.91; H, 1.80 C₁₂H₈CaCl₂O₆S₂ requires: C, 34.05; H, 1.90.

mL). C₈F₁₇SO₃H (1.6 mL, 6.0 mmol) was added dropwise and the white suspension was stirred at rt for 5 h. The suspension was filtered and the solvent was evaporated. The obtained white solid (1.8 g, 2.7 mmol, 66 %) was dried under high vacuum overnight. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.2, -114.7, -120.5, -121.5, -121.7, -122.5, -125.8; IR v_{max}/cm⁻¹ 946, 988, 1089, 1146, 1199; Elemental Analysis found: C, 17.36; S, 6.02 C₁₆CaF₃₄O₆S₂ requires: C, 18.51; S, 6.18.

Calcium 4-methoxyphenolate:¹ Ca(OMe)₂ (0.31 g, 3.0 mmol) was added to p-methoxyphenol (0.75 g, 6.0 mmol) in THF (anhydrous, 50 mL). The white suspension was stirred at rt

overnight. THF was removed under vacuum and the resulting brownish solid (0.49 g, 3.0 mmol, 100 %) was dried under high vacuum overnight. ¹H NMR (400 MHz, DMSO-d₆) δ 3.6 (3 H, s, OMe), 6.55 (2 H, m, H_{aromat}), 6.62 (2 H, m, H_{aromat}); ¹³C NMR (100 MHz, DMSO-d₆) δ 56.0, 115.0, 117.6; IR v_{max}/cm⁻¹ 733, 824, 1031, 1177, 1220, 1439, 1504, 3395.

 $Ca^{2+} \begin{pmatrix} O & O & O \\ O & S & S & O \\ F & F & F & F & F \end{pmatrix}_{2}$ Calcium bis(trifluoromethylsulfonyl)amide:² CaCO₃ (0.20 g, 2.0 mmol) was dissolved in dest. H₂O (10 mL), then bistriflateamine (1.1 g, 4.0 mmol) was added to the white suspension and the resulting clear solution was stirred at rt overnight. After the solvent was removed under vacuum the white residue was taken up in Et₂O twice, evaporated and dried under high vacuum overnight. A white crystalline solid was obtained (0.64 g, 2.0 mmol, 100 %). ¹³C NMR (100 MHz, MeOD-d₄) δ 115.1, 118.3, 121.6, 124.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.0; IR v_{max}/cm⁻¹ 747, 800, 1048, 1123, 1199, 1323, 1628, 1642.

Initial calcium salt screen

 \cap

$\frac{1}{1} \xrightarrow{\text{Calcium sait (1.0 equiv.)}}{\text{MeOH, rt, 20 min}} \xrightarrow{\text{Calcium sait (1.0 equiv.)}}{1} \xrightarrow{\text{Calcium sait (1.0 equiv.)}}{1}$					
Entry	Calcium salt	Selectivity			
		2	3		
1	-	0	100		
2	CaF_2	5	95		
3	CaCl ₂	48	52		
4	CaBr ₂ hydrate	45	55		
5	CaI ₂ hydrate	18	82		
6	Ca(OMs) ₂	19	81		
7	Ca(OTs) ₂	10	90		
8	Ca(OPhCl) ₂	19	81		
9	$Ca(BF_4)_2$	10	90		
10	Ca(BF ₄) ₂ hydrate	25	75		
11	Ca(OCl ₄) ₂ hydrate	44	56		
12	Ca(OTf) ₂	15	85		
13	$Ca(SO_{3}C_{8}F_{17})_{2}$	29	71		
14	$Ca(NTf_2)_2$	0	100		
15	Ca(OPhOMe) ₂	0	100		
16	Ca(OTf) ₂	30	70		
17	$Ca(OiPr)_2$	0	100		
18	Ca(OMe) ₂	8	92		
19	CaPO₄	0	100		

 $\cap \square$

∩ц

Optimisation of the reaction conditions in the presence of calcium triflate Ratio THF-MeOH

Entry		MeOH (%) ^{a,b}	Conversion (%)		
	1 HF (%)		2	3	
1	0	100	56	44	
2	50	50	46	54	
3	67	33	59	41	
4	86	14	76	24	
5	92	8	92	8	
6	95	5	85	15	
7	100	0	23	77	

^a Reaction conditions: cyclopentenone (0.40 mmol) and calcium triflate (0.40 mmol) in MeOH (%, see table) were added to NaBH₄ (1.6 mmol) in THF (9.6 mL) and stirred for 15 min at rt. ^b Conversion was determined by GC.

Equivalents calcium triflate

Entry		Conversion (%)		
	$Ca(O(1)_2)$ (equiv.)	2	3	
1	0.0	13	87	
2	0.1	17	83	
3	0.5	59	41	
4	0.75	87	13	
5	1.0	92	8	
6	1.25	87	13	

^a Reaction conditions: cyclopentenone (0.20 mmol) and calcium triflate (equiv., see table) in MeOH (0.20 mL) were added to NaBH₄ (0.80 mmol) in THF (2.4 mL) and stirred for 15 min at rt. ^b Conversion was determined by GC.

Substrate screen

Cyclopenten-2-ol (2):³ Following method C 2 was isolated in 75 % yield as a colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 1.46 (1 H, br s, OH), 1.64-1.74 (1 H, m), 2.20-2.32 (1 H, m), 2.46-2.56 (1 H, m), 4.83-4.90 (1 H, m), 5.81-5.86 (1 H, m, H_{alkene}), 5.97-6.10 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 30.9, 33.3, 77.7, 133.3, 135.2.

Cyclohexen-2-ol (5a):⁴ Following method C 5a was isolated in 96 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.61-2.11 (6 H, m), 5.25 (1 H, m), 5.68 (1 H, m, H_{alkene}), 5.95 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 21.4, 28.3, 68.1, 125.7, 132.7.

OH (Z)-Cyclohept-2-enol (5b):⁵ Following method C 5b was isolated in 77 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.30-2.05 (8 H, m), 2.14-2.21 (1 H, m), 4.39 (1 H, d, J = 8.1 Hz, CH(OH)), 5.70-5.78 (2 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 26.7, 26.8, 28.6, 36.7, 72.1, 130.1, 137.8.

OH (5*R*)-2-Methyl-5-(prop-1-en-2-yl)cyclohex-2-enolenol (5c):⁶ Following method C 5c was isolated in 96 % yield as a colourless oil (*d.r.* = 95:5). ¹H NMR (400 MHz, CDCl₃) δ 1.51 (1 H, m), 1.74 (3 H, s, Me), 1.76 (3 H, s, Me), 1.90-1.99 (1 H, m), 2.00-2.10 (1 H, m), 2.12-2.19 (1 H, m), 2.20-2.30 (1 H, m), 4.18 (1 H, m), 4.73 (2 H, s, H_{alkene}), 5.50 (1 H, s H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 19.0, 20.6, 31.0, 38.0, 40.4, 70.9, 109.1, 123.4, 123.5, 136.1, 149.0.

C (Z)-3-Methyl-2-(pent-2-enyl)cyclopent-2-enol (5d):⁷ Following method C 5d was isolated in 69 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.98 (3 H, t, J = 6.7 Hz, CH_2CH_3), 1.60-1.69 (1 H, m), 1.69 (3 H, s, Me), 2.10-2.25 (4 H, m,), 2.38-2.48 (1 H, m), 2.80-2.95 (2 H, m), 4.65-4.72 (1 H, m), 5.30-5.48 (2 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 14.6, 20.8, 20.9, 21.5, 31.2, 32.0, 34.6, 36.2, 53.8, 132.6.

(*E*)-4-Phenylbut-3-en-2-ol (5e):⁸ Following method C 5e was isolated in 99 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.39 (3 H, d, J = 6.4 Hz, CHC*H*₃), 4.51 (1 H, dq, J = 0.87, 6.34 Hz, C*H*(OH)), 6.28 (1 H, dd, J = 6.4, 16.0 Hz, H_{alkene}), 6.58 (1 H, d, J = 15.9 Hz, H_{alkene}), 7.24-7.27 (1 H, m, H_{aromat}), 7.31-7.36 (2 H, m, H_{aromat}), 7.37-7.42 (2 H, m, H_{aromat}); ¹³C NMR δ 23.4, 69.0, 126.5, 127.7 (2C), 128.6, 129.4 (2C), 132.9, 136.7.

OH Ethyl-4-hydroxy-2-methylcyclohex-2-enecarboxylate (5f):⁹ Following method C 5f was isolated in 52 % yield as a colourless oil (*d.r.* could not be determined). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (3 H, t, *J* = 6.5 Hz, CH₂CH₃), 1.71 (3 H, s, Me), 1.72-1.90 (2 H, m), 1.95-2.05 (1 H, m), 4.14-4.17 (2 H, m), 5.67 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 22.1, 23.5, 29.2, 45.7, 60.7, 65.6, 127.8, 128.1, 134.4.

OH 3-Methylcyclopent-2-enol (5g):¹⁰ Following method C 5g was isolated in 78 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.75 (3 H, s, Me), 2.01-2.40 (4 H, m), 4.57 (1 H, m), 5.44 (1 H, m), 5.99 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 16.4, 34.3, 35.1, 77.7, 127.7, 142.2.

 $(E)-4-(2,6,6-Trimethylcyclohex-1-enyl)but-3-en-2-ol (5h):^{11}$ Following method C 5h was isolated in 93 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.00 (3 H, d, J = 2.2 Hz, CHCH₃), 1.04 (3 H, d, J =4.9 Hz, Me), 1.30 (3 H, d, J = 6.3 Hz, Me), 1.47 (2 H, m), 1.63 (2 H, m), 1.70 (3 H, d, J =11.6 Hz, Me), 1.98 (2 H, m), 4.10 (1 H, m, CH(OH)), 5.36 (1 H, ddd, J = 7.6, 16.0, 24.1 Hz, H_{alkene}), 6.00 (1 H, d, J = 15.9 Hz, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 19.2, 21.3, 23.5 (2C), 28.7, 32.6, 33.9, 39.3, 69.5, 127.5, 128.8, 136.6, 137.6.

OH
(E)-5-Methylhex-3-en-2-ol (5i):¹² Following method C 5i was isolated in 61 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.98 (6 H, d, J = 6.7 Hz, CH(CH₃)₂), 1.25 (3 H, d, J = 6.3 Hz, CHCH₃), 1.74 (1 H, br s, OH),
2.21-2.31 (1 H, m), 4.24 (1 H, quintet, J = 6.3 Hz, CH(CH₃)₂), 5.45 (1 H, dd, J = 6.6 and 15.5 Hz, H_{alkene}), 5.60 (1 H, dd, J = 6.4 and 15.5 Hz, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 22.2 (2C), 23.4, 30.5, 38.0, 69.0, 131.1, 138.1.

(*E*)-1,3-Diphenylprop-2-en-1-ol (5j):¹³ Following method C 5j was isolated in 44 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃)

δ 2.10 (1 H, d, J = 3.5 Hz, OH), 5.43 (1 H, dd, J = 2.8 and 6.3 Hz, CH(OH)), 6.43 (1 H, dd, J = 6.5 and 15.8 Hz, H_{alkene}), 6.73 (1 H, d, J = 15.7 Hz, H_{alkene}), 7.28-7.49 (10 H, m, H_{aromat.}); ¹³C NMR (100 MHz, CDCl₃) δ 75.1, 126.3, 126.6 (2C), 127.7 (2C), 127.8, 128.5 (2C), 128.6 (2C), 130.5, 131.5, 136.5, 142.7.

OH (1*S*,4*R*)-3-Methylenebicyclo[2.2.1]heptan-2-ol (5k):¹⁴ Following method C 5k was isolated in 72 % yield as a colorless oil (*d.r.* = 100:0). ¹H NMR (400 MHz, CDCl₃) δ 0.84-0.86 (1 H, m), 1.28-1.42 (6 H, m), 2.38 (1 H, m), 2.72 (1 H, m), 4.36 (1 H, br s, OH), 4.92 (2 H, dd, *J* = 0.9, 6.7 Hz, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 23.5, 26.2, 31.2, 44.1, 45.2, 66.9, 104.3, 123.5.

OH (1*R*,5*R*)-4,6,6-Trimethylbicyclo[3.1.1]hept-3-en-2-ol (5l):¹⁵ Following method C 5l was isolated in 52 % yield as a colourless oil (*d.r.* = 91.9; m.p.: 60-63 °C). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (3H, s, Me), 1.30 (1 H, d, *J* = 9.0 Hz), 1.34 (3 H, s, Me), 1.64 (1 H, d, *J* = 5.3 Hz), 1.73 (3 H, s, Me), 1.97 (1 H, dd, *J* = 5.4, 5.4 Hz), 2.29 (1 H, m), 2.44 (1 H, m), 4.45 (1 H, br s, OH), 5.36 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 22.6, 26.9 (2C), 35.6, 39.0, 47.7, 48.2, 73.6, 119.3, 147.2.

OH
3-Methylcyclohex-2-enol (5m):¹⁶ Following method C 5m was isolated in 79 % yield as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.46-1.50 (1 H, m), 1.54-1.59 (2 H, m), 1.67 (3 H, s, Me), 1.68-1.94 (4 H, m), 4.17 (1 H, m, CH(OH)), 5.49 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 19.0, 23.6, 30.0, 31.6, 65.8, 124.2, 138.6.

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-Dimethyl-2,3,6,7,8,9,10,11,12,13, 14,15,16,17-tetradeca-hydro-1*H*-cyclopenta[α]phen-anthrene-3, 17-diol (5n):¹⁷ Following method C 5n was isolated in 86 % yield as a white solid (*d.r.* = 93:7; mp.: 120-124 °C). ¹H NMR (400 MHz, CDCl₃) δ 0.65 (3 H, s, Me), 0.85-2.10 (18 H m), 0.98 (3 H, s, Me).

3.07 (1 H, d, J = 6.7 Hz), 3.18-3.22 (1 H, m), 3.92-3.97 (1 H, m), 4.38 (1 H, d, J = 6.7 Hz), 4.45 (1 H, d, J = 6.5 Hz), 5.17 (1 H, m, H_{alkene}); ¹³C NMR (100 MHz, CDCl₃) δ 11.0, 18.9, 20.6, 23.3, 29.4, 30.4, 32.0, 32.6, 35.4, 36.0, 36.6, 37.4, 42.8, 50.7, 54.4, 67.9, 81.8, 123.5, 147.4.

Reduction of (1-benzyl-3-phenylaziridin-2-yl)(phenyl)methanone

Following method C the α , β -aziridinyl alcohol was isolated in 63 % yield as a colorless, viscous oil (*d.r.* = 95:5, syn:anti). ¹H NMR (400 MHz, CDCl₃) δ 1.62 (br. s, 1H), 2.19 (dd, J = 6.3, 8.5 Hz, 1H), 2.92 (d, J = 6.3 Hz, 1H), 3.47 (d, J = 13.5 Hz, 1H), 3.72 (d, J =

13.5 Hz, 1H), 4.23 (d, J = 8.5 Hz, 1H), 7.19-7.30 (m, 9H), 7.34-7.38 (m, 4H), 7.49-7.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.9, 52.1, 64.0, 71.2, 125.8, 126.9, 127.0, 127.3, 127.6, 128.0 (2C), 128.2 (2C), 128.3 (6C), 136.8, 138.6, 142.5; IR v_{max}/cm⁻¹ 697, 1028, 1067, 1110, 1452, 1495, 3370; HRMS (ES+) for C₂₂H₂₁NO: calc. 316.1693; found 316.1688.

Internal standard = IS

QQT

٠

S23

· 181

References

- ¹ T. Tsubogo, Y. Yamashita and S. Kobayashi, Angew. Chem., Int. Ed., 2009, 121, 5927.
- ² M. Niggemann and M. Meel, Angew. Chem., Int. Ed., 2010, 49, 3684.
- ³ A. Maercker and R. Geuss, *Chem. Ber.*, 1973, **103**, 773.
- ⁴ S. Utimoto; Chem. Lett., 1991, 1847.
- ⁵ B. M. Trost, J. Richardson and K. Yong, J. Am. Chem. Soc., 2006, **128**, 2540.
- ⁶ K. Nonoshita, K. Maruoka and H. Yamamoto, Bull. Chem. Soc. Jpn., 1988, 61, 2241.
- ⁷ G. B. Fisher, J. C. Fuller, J. Harrison, S. G. Alvarez, E. R. Burkhardt, C. T. Goralski and B. Singaram, *J. Org. Chem.*, 1994, **59**, 6378.
- ⁸ J. A. McCubbin, S. Voth and O. V. Krokhin, J. Org. Chem, 2011, 76, 8537.
- ⁹ S. Krishnamurthy and H. C. Brown, J. Org. Chem., 1977, 42, 1197.
- ¹⁰ A. S. Bloss, P. R. Brook and R. M. Ellam, J. Chem. Soc., Perkin Trans. 2, 1973, 2165.
- ¹¹ S. Akai, R. Hanada, N. Fujiwara, Y. Kita and M. Egi, *Org. Lett.*, 2010, **12**, 4900.
- ¹² I. Fleming, D. Higgins, N. J. Lawrence and A. P. Thomas, J. Chem. Soc., Perkin Trans. 1, 1992, 3331.
- ¹³ J. Ranjan and J. A. Tunge, J. Org. Chem., 2011, 76, 8376.
- ¹⁴ A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, **103**, 5454.
- ¹⁵ R. A. Archer, W. B. Blanchard, W. A. Day, D. W. Johnson, E. R. Lavagnino and C. W. Ryan, *J. Org. Chem.*, 1977, **42**, 2277.
- ¹⁶ D. B. Ball, P. Mollrad and K. R. Voigtritter. J. Chem. Edu., 2010, 87, 717.
- ¹⁷ M. K. Parr, J. Zapp, M. Becker, G. Opfermann, U. Bartz and W. Schänzer, *Steroids*, 2007, 72, 545.