# Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis

X. Miao, a C. Fischmeister, P. H. Dixneuf, C. Bruneau, J.-L. Dubois, J.-L. Couturier

<sup>a</sup>UMR 6226-CNRS –Université de Rennes 1, Institut des Sciences Chimiques de Rennes, Campus de Beaulieu, 35042, Rennes cedex, France.

<sup>b</sup>Arkema, , 420 Rue d'Estienne d'Orves, 92705 Colombes (France)

<sup>c</sup>Arkema, CRRA, BP 63, rue Henry Moissan, 69493, Pierre Bénite (France)

### **Supporting Information**

#### **General Informations**

All reactions were carried out with exclusion of air using Schlenk tube techniques. Organic solvents were dried by standard procedures and distilled under argon prior to use. 10-Undecenitrile supplied by Arkema was distilled under vacuum and stored under Argon prior to use. Methyl acrylate was purchased from Acros Organics and stored under Argon over 4 A MS prior to use. tBuOK (98%) was purchased from Alfa Aesar and stored under Argon. <sup>1</sup>H NMR spectra were recorded at 200 MHz and 300 MHz. <sup>13</sup>C NMR spectra were recorded at 50.3 MHz and 75.5 MHz. Reactions were monitored using a Shimadzu 2014 gas chromatograph equipped with Equity <sup>TM</sup> – 1 Fused Silica capillary column. Pure products were obtained by column chromatography on silica gel (Merck Silica Gel 60) using mixtures of petroleum ether and diethyl ether or a mixture of petroleum ether and ethyl acetate as the eluent. High resolution mass spectrometry data (HR-MS) was recorded using Varian Mat 311 equipped with a magnetic field, an electric field (geometry BE) and a room of collisions. Elemental analysis data were obtained on a microanalysor (Microanalyseur Flash EA1112 CHNS/O Thermo Electron). Products were further analyzed by GC-MS on a Shimadzu QP2010S apparatus.

#### General procedure for the cross-metathesis of 10-undecenitrile 1 with methyl acrylate.

83 mg of **1** (0.5 mmol, 1 equiv.) and 0.09 ml of methyl acrylate (1 mmol, 2 equiv.) were dissolved in 10 ml of distilled toluene with dodecane (10  $\mu$ l) as internal standard. 1.6 mg of complex **II** (0.5 mol%) was added and the reaction was stirred at 50 °C for 1 h. After solvent evaporation, the product was purified by column chromatography on silica gel using a mixture of petroleum ether/diethyl ether (8/2) as eluent to furnish **3** as a mixture of *E* and *Z* isomers that could be partially separated during column chromatography purification.

#### E isomer:

<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>) δ ppm: 1.32-1.71 (m, 12 H, 6 CH<sub>2</sub>); 2.20 (m, 2 H, CH<sub>2</sub>CH=CHCO); 2.34 (t, 2 H,  ${}^{3}J_{HH} = 7.0$  Hz, NCCH<sub>2</sub>); 3.73 (s, 3 H, OCH<sub>3</sub>); 5.83 (d, 1 H,  ${}^{3}J_{HH} = 15.7$  Hz, CH=CHCO); 6.70 (dt, 1 H,  ${}^{3}J_{HH} = 15.7$  Hz,  ${}^{3}J_{HH} = 7.0$  Hz, CH=CHCO).

<sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 17.1, 25.3, 27.9, 28.6, 28.6, 28.9, 29.0, 32.1 (<u>C</u>H<sub>2</sub>); 51.4 (<u>OC</u>H<sub>3</sub>); 119.8 (<u>C</u>N); 120.9 (CH=<u>C</u>HCO<sub>2</sub>Me); 149.6 (<u>C</u>H=CHCO<sub>2</sub>Me); 167.2 (<u>C</u>=O).

**Elemental Analysis:** Calculated for  $C_{13}H_{21}NO_2$ : C: 69.92; H: 9.48; N: 6.27; found: C: 69.27; H: 9.45; N: 6.42

**HRMS**:  $[M+Na]^+$  ( $C_{13}H_{21}NO_2Na$ ) m/z Calculated : 246.1470, measured: 246.1469

#### Z isomer

<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>) δ ppm: 1.34-1.72 (m, 12 H, 6 C $\underline{H}_2$ ); 2.35 (t, 2 H,  ${}^3J_{HH}$  = 7.1 Hz, NCC $\underline{H}_2$ ); 2.66 (m, 2 H, C $\underline{H}_2$ CH=CHCO); 3.72 (s, 3 H, OC $\underline{H}_3$ ); 5.79 (dt, 1 H,  ${}^3J_{HH}$  = 11.5 Hz,  ${}^3J_{HH}$  = 1.5 Hz, CH=C $\underline{H}$ CO); 6.70 (dt, 1 H,  ${}^3J_{HH}$  = 11.5 Hz,  ${}^3J_{HH}$  = 7.5 Hz, C $\underline{H}$ =CHCO).

## General procedure for the cross-metathesis of 10-undecenitrile 1 with methyl acrylate using syringe pump slow addition of catalyst.

332 mg of 1 (2 mmol, 1 equiv.) and 0.36 ml of methyl acrylate (4 mmol, 2 equiv.) were dissolved in 38 ml of distilled toluene with dodecane (10  $\mu$ l) as internal standard. The desired amount of catalyst was dissolved in 2 ml of toluene and added dropwise over a period of 2 h 40 min into the reaction mixture heated at the desired temperature (see picture). After completion of the catalyst addition, the reaction was stirred for 2 h 20 min. Total reaction time 5 h.



## Representative general Procedure for Tandem Cross-metathesis of 1 with methyl acrylate / Hydrogenation to saturated amino-ester 7

83 mg of **1** (0.5 mmol, 1 equiv.) and 0.09 ml of methyl acrylate (1 mmol, 2 equiv.) were dissolved in 10 ml of distilled toluene with dodecane (10  $\mu$ l) as internal standard. 9.4 mg (0.015 mmol, 3 mol%) of complex **II** were added and the reaction mixture stirred at room temeperature for 1h. The crude reaction solution containing the residual ruthenium was transferred into an autoclave. <sup>1</sup>BuOK (0.15 mmol, 16.8 mg, 30 mol%)) was added and the reactor was pressurised with 20 bar of H<sub>2</sub>. The reaction was stirred at 80 °C for 40 h. After solvent evaporation the product was purified by extraction dichloromethane / 1 N HCl and dichloromethane / 1 N NaOH to furnish **7** as a yellowish solid. M = 102 mg (yield = 90%).

<sup>1</sup>H NMR (300.13 MHz, CD<sub>3</sub>OD) δ ppm: 1.33 (broad s, 14 H, 7 C $\underline{\text{H}}_2$ ); 1.54-1.64 (m, 4 H, C $\underline{\text{H}}_2$ CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> + C $\underline{\text{H}}_2$ CH<sub>2</sub>CO<sub>2</sub>Me); 2.33 (t, 2 H,  ${}^3J_{\text{HH}} = 7.4$  Hz, C $\underline{\text{H}}_2$ CO<sub>2</sub>Me); 2.76 (t, 2 H,  ${}^3J_{\text{HH}} = 7.4$  Hz, CH<sub>2</sub>NH<sub>2</sub>); 3.66 (s, 3 H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (75.5 MHz, CD<sub>3</sub>OD) δ ppm: 24.7, 26.7, 28.9, 29.1, 29.3, 29.4, 29.4, 29.6, 32.1, 33.5, 41.1 (<u>CH</u><sub>2</sub>); 50.6 (O<u>C</u>H<sub>3</sub>); 174.2 (<u>C</u>=O).

**HRMS**:  $[M+H]^+(C_{13}H_{28}NO_2)$  m/z calculated: 230.2120, measured: 230.2121  $[M+Na]^+(C_{13}H_{27}NO_2Na)$  m/z calculated: 252.1939, measured: 252.1937