Electronic Supplementary Information (ESI)

Simultaneous glycerol dehydration and *in-situ* hydrogenolysis over Cu-Al oxide under an inert atmosphere

Rasika B. Mane and Chandrashekhar V. Rode*

Experimental

X-ray photoelectron spectroscopy (XPS) data were collected on a VG Scientific ESCA-3000 spectrometer using a non-monochromatised Mg K α radiation (1253.6 eV) at a pressure of about 1×10^{-9} Torr (pass energy of 50 eV, electron takeoff angle 55) and overall resolution ~0.7 eV determined from the full width at half maximum of the 4f_{7/2} core level of gold surface. The error in the binding energy values were within 0.1 eV. The binding energy values were charge-corrected to the C_{1s} signal (285.0 eV).

The chemical composition of the sample was determined by Energy Dispersive X-ray spectroscopy (EDX) attached to SEM (JEOL JSM 500).

Gas analysis was carried out using Chemito 8610 GC fitted with Porapac-Q column connected to TCD detector.

The Temperature-programmed desorption of CO_2 (CO_2 -TPD) was carried out in a Quantachrome Autosorb -1C sorption unit. 100 mg activated Cu-Al sample was heated at a rate of 10 °C min⁻¹ to 110 °C under He flow (30ml min⁻¹) and maintained at this temperature for 1 h in order to remove the surface impurities. After being cooled to room temperature under He flow, the sample was exposed to a mixture of 30 % CO_2 /He for 1.3 h. Subsequently, the sample was purged with He for 30 min and then heated to 700 °C at a rate of 10 °C min⁻¹. Desorption of CO_2 was monitored by the mass spectrometry.

Fig.1 N₂ adsorption/desorption isotherm of activated Cu-Al catalyst.

Fig.2 O 1s spectra of the calcined and activated Cu-Al catalyst.

Fig. 3 Al 2p spectra of the calcined and activated Cu-Al catalyst.

Fig. 4 CO₂-TPD profile of the activated Cu-Al catalyst.

Table 1 Gas phase analysis

Catalysts	Substrate	Temperature	Gas phase composition (%)		
			H ₂	CO_2	CH ₄
Cu:Al (1:1) ^a	Glycerol	220	80	20	0.0
$20\%~Cu/Al_2O_3{}^a$	Glycerol	230	0.0	0.0	0.0
$Al_2O_3^{\ a}$	Glycerol	230	0.0	0.0	0.0
3%Pt/C ^a	Glycerol	220	86	8	6
$Cu:Al(1:1)^b$	Glycerol	220	76	24	0.0
$Cu:Al(1:1)^b$	Glycerol	230	80	20	0.0
Cu:Al (1:1) ^a	Acetol	220	0.0	0.0	0.0
Cu:Al (1:1) ^a	1,2-PDO	220	100	0.0	0.0
Reaction conditi GHSV= 513 h^{-1} , 1	ons: ^a batch op LHSV = 1.53	peration, reaction t h^{-1}	ime, 3h. ^b co	ntinuous ope	ration at

Fig. 5 GC of gas phase composition (Cu-Al catalyst).

 $* N_2$ was used as an inert in the reaction hence the compositions of other gases were calculated by excluding N_2 .

Fig. 6 GC of gas phase composition (3% Pt/C).

Scheme 1 Formaldehyde formation by C-C cleavage of glycerol under dehydration condition

Scheme 2 Schematic representation of reaction pathways during autogeneous hydrogenolysis of aqueous glycerol under inert atmosphere. Pathway I is desirable for glycerol dehydration to give acetol followed by its further hydrogenation to 1,2-PDO and its excess hydrogenation leads to undesirable 2-propanol formation. Pathways II, III, IV present the undesirable C-C cleavage leading to formation of ethylene glycol, formaldehyde, and acetaldehyde. Pathway V is the acetol isomerization giving propionic acid.

Fig. 7 EDX of Cu-Al catalyst.

Fig. 8 Schematic of a batch reactor set-up.

Fig. 9 Schematic of a continuous fixed bed reactor set-up.