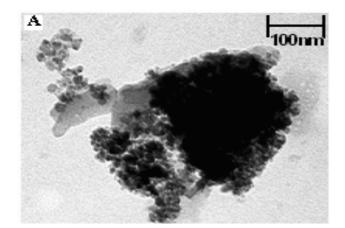
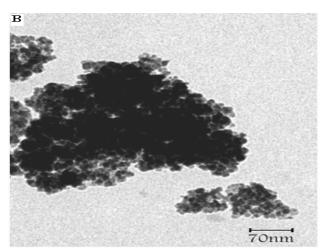
Supporting Information

Aqueous Heterogeneous Oxygenation of Hydrocarbons and Sulfides Catalyzed by Recoverable Magnetite Nanoparticles Coated with Copper (II) Phthalocyanine

Abdolreza Rezaeifard,* Maasoumeh Jafarpour,* Atena Naeimi and Reza Haddad

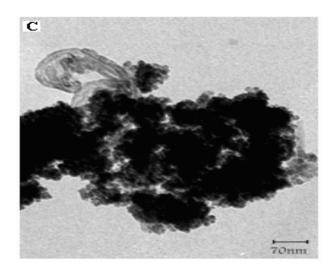
Table S1. The oxidation of indane using aqueous solution of TBAOX catalyzed by CuPcS@ASMNP


Run	Indane/TBAOX/Catalyst	Total	T/°C	Time/min
	Molar Ratio	conversion		
1	200:600:1	0	70	90
2	200:600:1	10	70	180
3	200:600:1	57	80	180
4	100:300:1	90	80	180


Table S2. Screening of solvents and quantity of the catalyst in the oxidation of methylphenylsulfide^{a)}

Entry	Catalyst	Equivalent of	Solvent	Conversion	Sulfoxide
	mol%	TBAOX		%	Selectivity % ^b
1	0_{p}	3	H ₂ O	70	44
2	0.5	3	H_2O	100	0
3	1	1	H_2O	60	65
4	0.5	2	H_2O	80	35
5	1	2	H_2O	90	40
6	0.5	1	H_2O	45	77
7	0.5°	1	H_2O	40	90
8	0.5	1	H ₂ O/EtOH(2/1)	50	80
9	0.5	1	H ₂ O/EtOH(1/1)	65	85
10	0.5	1	H ₂ O/EtOH(1/2)	$80(100^{d})$	100(100)
11	0.5	1	H ₂ O/EtOH(1/3)	80	100

12	0.5	1	EtOH	35	85
13	0.5	1	$H_2O/EtOH(1/2)$	100	-


GC yield

b) Reaction condition: The reactions were run at room temperature within 1h. Reaction condition: The reactions were run at 0°C within 1h.

Reaction condition: The reactions were run at room temperature within 1.5h.

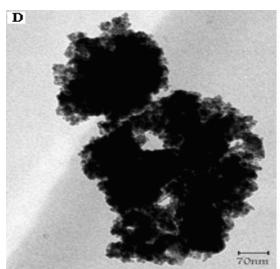


Fig. S1. TEM images of CuPcS@ASMNP stirred in aqueous solution of H_2O_2 (A) TBHP (B) PhIO (C) and Oxone[®] (D) at 70 °C.