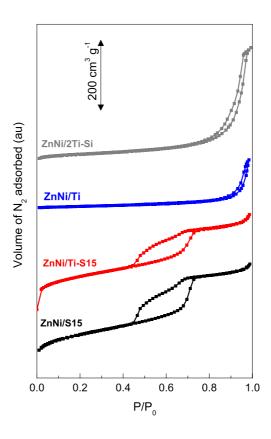
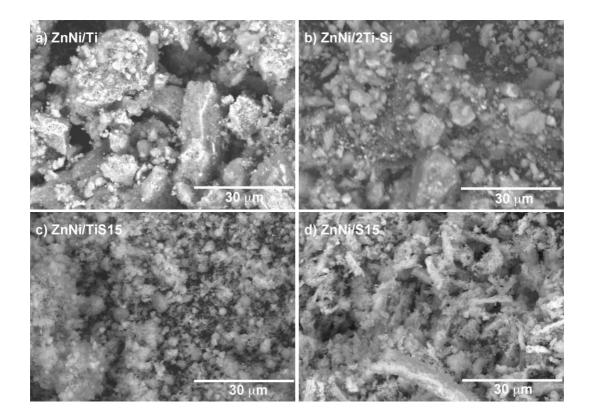
Supporting Information

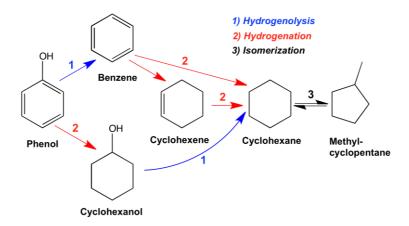
Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel

C.V. Loricera^a, P. Castaño^b*, A. Infantes-Molina^{a,c}, I. Hita^b, A. Gutiérrez^b, J.M. Arandes^b, J.L.G. Fierro^a and B. Pawelec^a




Fig. 1. N₂ adsorption-desorption isotherms at -196 °C of calcined ZnNi catalysts.

^a Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, Cantoblanco, 28049 Madrid, Spain


^b University of the Basque Country (UPV-EHU), Chemical Engineering Department, 644-48080 Bilbao, Spain

^c UA CSIC-Universidad de Malaga, Málaga, Spain

^{*} Corresponding authors: pedro.castano@ehu.es

Fig. 2. SEM pictures of spent ZnNi catalysts tested in HDO of phenol (T = 310 °C, P = 3MPa, WHSV = 2.57 h⁻¹).

Scheme 1. Scheme of the phenol HDO over supported ZnNi catalysts.

Scheme 2. Reaction pathways for hydrotreating of aromatics present in synthetic diesel on supported ZnNi catalysts.