Supporting information

An eco-friendly sequential catalyst- and solvent-free four-component stereoselective synthesis of novel 1,4-pyranonaphthoquinones

Balasubramanian Devi Bala, Stephen Michael Rajesh, Subbu Perumal*

Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Fig.1. Selected HMB correlations of 5f

Details of Spectra

Fig.No	List of Figures	Page
2.1	¹ H NMR spectrum of 3a	4
2.2	¹ H NMR spectrum of 3a (expanded)	4
2.3	¹³ C NMR spectrum of 3a	5
2.4	C,H-COSY spectrum of 3a	5
2.5	¹ H NMR spectrum of 5 f	6
2.6	¹ H NMR spectrum of 5f (expanded)	6
2.7	¹ H NMR spectrum of 5f (D_2O)	7
2.8	¹³ C NMR spectrum of 5 f	7
2.9	¹³ C NMR spectrum of 5f (expanded)	8
2.10	DEPT-135 spectrum of 5f	8
2.11	H,H-COSY spectrum of 5 f	9
2.12	C,H-COSY spectrum of 5 f	9
2.13	C,H-COSY spectrum of 5f (expanded)	10
2.14	HMBC spectrum of 5f	11
2.15	HMBC spectrum of 5f (expanded)	11
2.16	HMBC spectrum of 5f (expanded)	12
2.17	Mass spectrum of 5f	13
2.18	¹ H NMR spectrum of 5a	13
2.19	¹³ C NMR spectrum of 5a	14
2.20	Mass spectrum of 5a	14
2.21	¹ H NMR spectrum of 5b	15
2.22	¹³ C NMR spectrum of 5b	15
2.23	¹ H NMR spectrum of 5c	16
2.24	¹³ C NMR spectrum of 5 c	17
2.25	¹ H NMR spectrum of 5d	17
2.26	¹³ C NMR spectrum of 5d	18
2.27	Mass spectrum of 5d	19
2.28	¹ H NMR spectrum of 5e	19
2.29	¹³ C NMR spectrum of 5e	20
2.30	Mass spectrum of 5e	20

2.31	¹ H NMR spectrum of 5 g	21
2.32	¹³ C NMR spectrum of 5 g	22
2.33	¹ H NMR spectrum of 5h	22
2.34	¹³ C NMR spectrum of 5h	23
2.35	Mass spectrum of 5h	23
2.36	¹ H NMR spectrum of 5 i	24
2.37	¹³ C NMR spectrum of 5 i	24
2.38	¹ H NMR spectrum of 5 j	25
2.39	¹³ C NMR spectrum of 5 j	25
2.40	¹ H NMR spectrum of 5 k	26
2.41	¹³ C NMR spectrum of 5 k	26
2.42	¹ H NMR spectrum of 5 I	27
2.43	¹³ C NMR spectrum of 5 I	28
2.44	¹ H NMR spectrum of 5m	28
2.45	¹³ C NMR spectrum of 5m	29
2.46	Mass spectrum of 5m	29
2.47	¹ H NMR spectrum of 5n	30
2.48	¹³ C NMR spectrum of 5n	30
2.49	¹ H NMR spectrum of 50	31
2.50	¹³ C NMR spectrum of 50	31
2.51	¹ H NMR spectrum of 5p	32
2.52	¹³ C NMR spectrum of 5p	32

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2012