Application of Recyclable Ionic Liquid-Supported Imidazolidinone Catalyst in Enantioselective Diels-Alder Reaction

Zhi-Liang Shen, Hao-Lun Cheong, Yin-Chang Lai, Wan-Yi Loo, and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Supporting Information

Table of contents

General methods	S2
General procedure for the enantioselective Diels-Alder reaction	S3
Spectroscopic data of the Diels-Alder adducts	S3
References	S7
Copies of ¹ H and ¹³ C NMR spectra of products	S8
Copies of HPLC spectra of product	S16

General methods

The ionic liquid-supported imidazolidinone catalysts **I-III** were synthesized by our previously reported method. ¹ Phenyl substituted α , β -unsaturated aldehydes were prepared according to previous reported methods as well.²

For HPLC analysis of the enantioselectivity of the products, the corresponding racemic Diels-Alder adducts and isoxazolidine compounds were synthesized by using InBr₃ as catalyst in CH₂Cl₂.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with acidic solution of ceric molybdate or ethanol solution of ninhydrin.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditions.

High Resolution Mass (HRMS) spectra were obtained using Finnigan MAT95XP GC/HRMS (Thermo Electron Corporation).

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300, Bruker AMX 400 and JEOL ECA 400SL spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.2600, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 77.03, triplet). The proportion of diastereomers was determined from the integration of ¹H NMR and/or ¹³C NMR spectra.

General procedure for the enantioselective Diels-Alder reaction

To a solution of catalyst I (0.05 g, 0.1 mmol) in CH₃CN (or CH₃NO₂)/H₂O (1 mL, 95/5 v/v) was added trifluoroacetic acid (0.0114 g, 0.1 mmol) and α , β -unsaturated aldehyde (1 mmol). The solution was stirred for 1-2 minutes before the addition of cyclopentadiene (0.331 g, 5 mmol). The reaction was stirred at room temperature for 21 h before the removal of CH₃CN (or CH₃NO₂) under *vacuo*. The residue was extracted by diethyl ether (5 mL x 5) with stirring on a magnetic stirrer, and the combined organic layer was washed with brine, dried over Na₂SO₄ and filtered. The filtrate was concentrated under *vacuo* and purified by silica gel column chromatography using hexane and ethyl acetate as eluant to afford the desired product. The remaining oil compound in the flask (catalyst I) was dried under *vacuo* and reused in further reactions by the addition of trifluoroacetic acid (0.0114 g, 0.1 mmol) and solvent.

Spectroscopic data of the Diels-Alder adducts

3-(4-Bromophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 1). Prepared according to the general procedure using trans-3-(4-bromophenyl)acrylaldehyde (0.211 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃NO₂/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 99% yield, 1.1/1.0 exo/endo, exo 71% ee, endo 73% ee. Enantioselectivity was determined by HPLC (OJ-H column) after reduction with NaBH₄/MeOH: 10:90 isopropanol/hexane, 1 mL/min, $t_r = 8.0$ min, 10.0 min, 19.8 min, 29.8 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) & 1.51-1.62 (m, 3H), 1.71-1.74 (m, 1H), 2.50-2.52 (m, 1H), 2.87-2.90 (m, 1H), 3.01-3.06 (m, 2H), 3.16-3.20 (m, 2H), 3.33 (s, 1H), 3.67 (t, J = 4.25 Hz, 1H), 6.02 (dd, J = 4.25 Hz, 1H), 5.02 (dd, J = 4.25 Hz, 1H), 5.58, 2.82 Hz, 1H), 6.15 (dd, J = 5.61, 2.73 Hz, 1H), 6.32 (dd, J = 5.55, 3.18 Hz, 1H), 6.39 (dd, J = 5.57, 3.26 Hz, 1H), 7.00 (d, J = 8.32 Hz, 2H), 7.12 (d, J = 8.31 Hz, 2H), 7.34 (d, J = 8.46 Hz, 2H), 7.40 (d, J = 8.47 Hz, 2H), 9.57 (d, J = 1.95 Hz, 1H), 9.87 (d, J = 1.86 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 203.0 (CH), 202.3 (CH), 142.6 (C), 141.6 (C), 139.1 (CH), 136.6 (CH), 136.2 (CH), 133.8 (CH), 131.6 (CH x 2), 131.2 (CH x 2), 129.6 (CH x 2), 129.1 (CH x 2), 120.1 (C), 120.0 (C), 61.0 (CH), 59.5 (CH), 48.3 (CH), 48.2 (CH), 47.5 (CH₂), 47.0 (CH₂), 45.4 (CH), 45.1 (CH), 45.0 (CH), 44.8 (CH) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for $C_{14}H_{14}BrO$: 277.0228, found: 277.0237. Spectroscopic data are identical to the published data.³

Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012

3-(4-Chlorophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 2). Prepared according to the general procedure using trans-3-(4-chlorophenyl)acrylaldehyde (0.167 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃NO₂/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 85% yield, 1.1/1.0 exo/endo, exo 85% ee, endo 84% ee. Enantioselectivity was determined by HPLC (OJ-H column) after reduction with NaBH₄/MeOH: 10:90 isopropanol/hexane, 1 mL/min, $t_r = 7.8$ min, 10.4 min, 21.2 min, 34.7 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 1.56-1.65 (m, 3H), 1.74-1.76 (m, 1H), 2.51-2.54 (m, 1H), 2.89-2.92 (m, 1H), 3.04-3.09 (m, 2H), 3.18-3.23 (m, 2H), 3.34 (s, 1H), 3.70 (t, J = 4.26 Hz, 1H), 6.04 (dd, J = 5.58, 2.83 Hz, 1H), 6.16 (dd, J = 5.62, 2.73 Hz, 1H), 6.34 (dd, J = 5.58, 3.18 Hz, 1H), 6.41 (dd, J = 5.59, 3.24 Hz, 1H, 7.06 (d, J = 8.37 Hz, 2H), 7.17-7.28 (m, 6H), 9.59 (d, J = 2.04 Hz, 1H), 9.89 (d, J = 1.92 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 203.0 (CH), 202.3 (CH), 142.1 (C), 141.1 (C), 139.1 (CH), 136.5 (CH), 136.3 (CH), 133.8 (CH), 132.0 (C), 131.9 (C), 129.2 (CH x 2), 128.7 (CH x 2), 128.6 (CH x 2), 128.2 (CH x 2), 61.0 (CH), 59.6 (CH), 48.4 (CH), 48.2 (CH), 47.5 (CH₂), 47.0 (CH₂), 45.4 (CH), 45.1 (CH), 45.0 (CH), 44.7 (CH) ppm. HRMS (ESI, m/z): $[M+H]^+$, calcd. for $C_{14}H_{14}CIO$: 233.0733, found: 233.0730. Spectroscopic data are identical to the published data.⁴

3-Phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 3). Prepared according to the general procedure using *trans*-cinnamaldehyde (0.132 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃CN/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 98% yield, 1.2/1.0 exo*lendo, exo* 90% ee, *endo* 94% ee. Enantioselectivity was determined by GLC (cyclodex-B column): $t_r = 103$ min, 105 min, 106 min, 108 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 1.51-1.61 (m, 3H), 1.76-1.79 (m, 1H), 2.56 (dt, *J* = 5.28, 1.77 Hz, 1H), 2.93-2.96 (m, 1H), 3.06-3.09 (m, 2H), 3.18-3.19 (m, 2H), 3.29 (s, 1H), 3.70 (t, *J* = 4.17 Hz, 1H), 6.04 (dd, *J* = 5.53, 3.06 Hz, 1H), 6.14 (dd, *J* = 5.56, 2.76 Hz, 1H), 6.30 (dd, *J* = 5.59, 3.49 Hz, 1H), 6.38 (dd, *J* = 5.61, 3.24 Hz, 1H), 7.11-7.31 (m, 10H), 9.56 (d, *J* = 2.16 Hz, 1H), 9.87 (d, *J* = 2.01 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.4 (CH), 202.7 (CH), 143.5 (C), 142.5 (C), 139.1 (CH), 136.4 (CH), 136.2 (CH), 133.7 (CH), 128.5 (CH x 2), 128.1 (CH x 2), 127.8 (CH x 2), 127.3 (CH x 2), 126.2 (CH), 126.1 (CH), 60.8 (CH), 59.4 (CH), 48.3 (CH), 48.3 (CH), 47.5 (CH₂), 47.0 (CH₂), 45.6 (CH), 45.4 (CH), 45.3 (CH), 45.1 (CH) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₅O: 199.1123, found: 199.1125. Spectroscopic data are identical to the published data.⁵

3-(2-Methoxyphenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 4). Prepared according to the general procedure using *trans*-3-(2-methoxyphenyl)acrylaldehyde (0.162 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃CN/H₂O (1 mL, 95/5 v/v), to afford a colorless oil in 95% yield, 1.0/1.0 exo/endo, exo 87% ee, endo 93% ee. Enantioselectivity was determined by HPLC (OJ-H column) after reduction with NaBH₄/MeOH: 10:90 isopropanol/hexane, 1 mL/min, $t_r = 7.0$ min, 8.1 min, 8.5 min, 9.3 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 1.51-1.60 (m, 2H), 1.68-1.72 (m, 2H), 2.31-2.34 (m, 1H), 2.53 (dd, J = 8.50, 3.97 Hz, 1H), 3.05 (s, 1H), 3.13-3.21 (m, 3H), 3.27 (s, 1H), 3.70 (s, 3H), 3.75 (s, 3H), 3.87 (dd, J = 5.30, 3.33 Hz, 1H), 6.13-6.16 (m, 2H), 6.23 (dd, J = 5.56, 3.33 Hz, 1H), 6.39 (dd, J = 5.30, 3.30 Hz, 1H), 6.30 (dd, J = 5.30, 3.30 Hz, 1H), 6.30 (dd, J = 5.30, 3.305.50, 3.37 Hz, 1H), 6.77-6.85 (m, 3H), 6.89-7.02 (m, 2H), 7.12-7.23 (m, 3H), 9.48 (d, J = 3.96Hz, 1H), 9.90 (d, J = 2.91 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 205.9 (CH), 203.9 (CH), 157.4 (C), 157.3 (C), 138.3 (CH), 136.7 (CH), 136.1 (CH), 134.0 (CH), 132.1 (C), 130.8 (C), 127.1 (CH), 127.0 (CH), 127.0 (CH), 125.3 (CH), 120.2 (CH), 119.8 (CH), 109.8 (CH), 109.7 (CH), 59.5 (CH), 57.7 (CH), 54.8 (CH₃), 54.7 (CH₃), 47.6 (CH₂), 47.2 (CH₂), 46.8 (CH), 46.1 (CH), 45.9 (CH), 45.3 (CH), 40.6 (CH), 40.0 (CH) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for $C_{15}H_{17}O_2$: 229.1229, found: 229.1216. Spectroscopic data are identical to the published data.³

3-(Naphthalen-2-vl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 5). Prepared according to the general procedure using trans-3-(naphthalen-1-yl)acrylaldehyde (0.182 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol)) in CH₃NO₂/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 83% yield, 1.2/1.0 exo/endo, exo 89% ee, endo 92% ee. Enantioselectivity was determined by HPLC (OJ-H column) after reduction with (NaBH₄/MeOH): 5:95 isopropanol/hexane, 1 mL/min, $t_r = 32.7$ min, 45.5 min, 58.2 min, 102.8 min. ¹H NMR (400 MHz, CDCl₃): (two isomers) δ 1.54-1.67 (m, 3H), 1.83 (d, J = 8.68 Hz, 1H), 2.66-2.68 (m, 1H), 3.00-3.03 (m, 1H), 3.21 (s, 3H), 3.26 (s, 1H), 3.31 (s, 1H), 3.85 (t, J = 4.12 Hz, 1H), 6.04 (dd, J = 4.12 Hz, 1H)5.48, 2.76 Hz, 1H), 6.16 (dd, J = 5.96, 2.76 Hz, 1H), 6.32 (dd, J = 5.48, 3.20 Hz, 1H), 6.42 (dd, J = 5.52, 3.20 Hz, 1H), 7.27 (dd, J = 8.24, 1.84 Hz, 1H), 7.34-7.44 (m, 5H), 7.52 (s, 1H), 7.66-7.78 (m, 7H), 9.60 (d, J = 1.84 Hz, 1H), 9.90 (d, J = 2.32 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): (two isomers) & 203.3 (CH), 202.7 (CH), 141.0 (C), 140.0 (C), 139.1 (CH), 136.5 (CH), 136.2 (CH), 133.8 (CH), 133.4 (C), 133.1 (C), 132.1 (C), 132.0 (C), 128.1 (CH), 127.6 (CH), 127.6 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.7 (CH), 126.6 (CH), 126.1 (CH), 126.0 (CH), 125.9 (CH), 125.5 (CH), 125.4 (CH), 124.7 (CH), 60.7 (CH), 59.1 (CH), 48.4 (CH), 48.2 (CH), 47.5 (CH₂), 47.1 (CH₂), 45.7 (CH), 45.5 (CH), 45.4 (CH), 45.1 (CH) ppm. HRMS (ESI, m/z): $[M+H]^+$, calcd. for C₁₈H₁₇O: 249.1279, found: 249.1289. Spectroscopic data are identical to the published data.³

3-Butylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 6). Prepared according to the general procedure using *trans*-hept-2-enal (0.112 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃CN/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 89% yield, 1.0/1.0 exo/*endo*, *exo* 84% ee, *endo* 93% ee. Enantioselectivity was determined by GLC (cyclodex-B column): $t_r = 40.5 \text{ min}$, 41.3 min, 42.1 min, 43.2 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 0.83-1.76 (m, 24H), 2.25-2.33 (m, 1H), 2.36 (dd, *J* = 7.69, 3.48 Hz, 1H), 2.66 (s, 1H), 2.87 (s, 1H), 3.02 (s, 1H), 3.12 (s, 1H), 6.06 (dd, *J* = 5.62, 2.73 Hz, 1H), 6.13 (dd, *J* = 5.53, 2.86 Hz, 1H), 6.21 (dd, *J* = 5.59, 3.09 Hz, 1H), 6.28 (dd, *J* = 5.61, 3.19 Hz, 1H), 9.37 (d, *J* = 3.37 Hz, 1H), 9.78 (d, *J* = 2.70 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 205.1 (CH), 204.0 (CH), 138.8 (CH), 136.1 (CH), 135.9 (CH), 132.8 (CH), 60.0 (CH), 58.8 (CH), 47.2 (CH), 47.0 (CH₂), 46.5 (CH₂), 45.7 (CH), 45.1 (CH), 44.9 (CH), 41.9 (CH), 41.6 (CH), 38.0 (CH₂), 36.5 (CH₂), 31.6 (CH₂), 22.7 (CH₂), 21.6 (CH₂), 21.6 (CH₂), 14.2 (CH₃), 14.1 (CH₃) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₉O: 179.1436, found: 179.1440. Spectroscopic data are identical to the published data.³

3-Propylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 7). Prepared according to the general procedure using *trans*-hex-2-enal (0.098 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃CN/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 78% yield, 1.1/1.0 exo*lendo*, *exo* 84% ee, *endo* 91% ee. Enantioselectivity was determined by GLC (cyclodex-B column): $t_r = 31.2 \text{ min}$, 32.2 min, $t_r = 33.8 \text{ min}$, 34.5 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 0.85-0.93 (m, 6H), 1.07-1.55 (m, 12H), 1.66-1.72 (m, 1H), 1.76 (s, 1H), 2.25-2.33 (m, 1H), 2.38 (dd, *J* = 7.63, 3.45 Hz, 1H), 2.66 (s, 1H), 2.87 (s, 1H), 3.02 (s, 1H), 3.12 (s, 1H), 6.06 (dd, *J* = 5.67, 2.77 Hz, 1H), 6.13 (dd, *J* = 5.62, 2.89 Hz, 1H), 6.21 (dd, *J* = 5.50, 3.12 Hz, 1H), 6.27 (dd, *J* = 5.67, 3.24 Hz, 1H), 9.37 (d, *J* = 3.33 Hz, 1H), 9.78 (d, *J* = 2.67 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 204.9 (CH), 203.8 (CH), 138.7 (CH), 136.0 (CH), 135.8 (CH), 132.7 (CH), 59.9 (CH), 58.7 (CH), 47.1 (CH), 46.9 (CH₂), 46.4 (CH₂), 45.6 (CH), 45.0 (CH), 44.7 (CH), 41.8 (CH), 41.5 (CH), 38.0 (CH₂), 36.4 (CH₂), 21.5 (CH₂), 21.4 (CH₂), 14.1 (CH₃ x 2) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₁H₁₇O: 165.1279, found: 165.1274. Spectroscopic data are identical to the published data.⁵

3-Ethylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 8). Prepared according to the general procedure using *trans*-pent-2-enal (0.084 g, 1 mmol) and cyclopentadiene (0.331 g, 5 mmol) in CH₃CN/H₂O (1 mL, 95/5 v/v), to afford a colourless oil in 45% yield, 1.0/1.0 exo/*endo*, *endo* 94% ee. Enantioselectivity was determined by GLC (cyclodex-B column): *endo* isomer $t_r = 41.1 \text{ min}$, 42.5 min. ¹H NMR (300 MHz, CDCl₃): (two isomers) δ 0.90 (t, J = 7.34 Hz, 3H), 0.96

(t, J = 7.34 Hz, 3H), 1.10-1.28 (m, 2H), 1.41–1.63 (m, 7H), 1.75-1.78 (m, 1H), 2.16-2.24 (m, 1H), 2.38 (dd, J = 3.42, 7.47 Hz, 1H), 2.69 (s, 1H), 2.90 (s, 1H), 3.03 (s, 1H), 3.12 (s, 1H), 6.07 (dd, J = 2.76, 5.68 Hz, 1H), 6.13 (dd, J = 2.89, 5.59 Hz, 1H), 6.21 (dd, J = 3.13, 5.64 Hz, 1H), 6.27 (dd, J = 3.21, 5.67 Hz, 1H), 9.38 (d, J = 3.27 Hz, 1H), 9.79 (d, J = 2.67 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): (two isomers) δ 205.0 (CH), 203.9 (CH), 138.7 (CH), 136.1 (CH), 135.8 (CH), 132.8 (CH), 59.8 (CH), 58.6 (CH), 47.0 (CH₂), 46.8 (CH), 46.4 (CH₂), 45.4 (CH), 45.0 (CH), 44.8 (CH), 44.1 (CH), 43.7 (CH), 28.5 (CH₂), 27.0 (CH₂), 12.9 (CH₃), 12.8 (CH₃) ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₀H₁₅O: 151.1123, found: 151.1108.

References

1. Z. L. Shen, K. K. Goh, C. H. A. Wong, W. Y. Loo, Y. S. Yang, J. Lu, T. P. Loh, *Chem. Commun.* **2012**, *48*, 5856.

(a) Avery, T. D.; Caiazza, D.; Culbert, J. A.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem.
2005, 70, 8344. (b) Aldous, D. J.; Batsanove, A. S.; Yufit, D. S.; Dalenco, A. J.; Dutton, W. M.;
Steel, P. G. Org. Biomol. Chem. 2006, 4, 2912-2927. (c) Maercker, A. Org. React. 1965, 14, 270.

3. Gotoh, H.; Hayashi, Y. Org. Lett. 2007, 9, 2859.

4. Lemay, M.; Ogilvie, W. W. Org. Lett. 2005, 7, 4141.

5. Ahrendt, K. A.; Borths, C. J.; Macmillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.

Copies of ¹H and ¹³C NMR spectra of product

Copies of HPLC spectra of product

-

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2 3 4	7.897 9.853 19.818 28.929	MM MM MM MM MM	0.1936 0.2532 1.0726 1.4242	2.43649e4 4760.36523 2.53656e4 4639.17578	2097.04761 313.37668 394.12830 54.28933	41.2057 8.0507 42.8980 7.8457
Tota.	ls :			5.91301e4	2858.84191	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.026	MM	0.2112	590.30951	46.58976	7.2151
2	9.962	VB	0.2449	555.68976	35.06238	6.7920
3	19.841	BB	0.5405	3501.24072	101.48627	42.7942
4	29.770	BB	0.8788	3534.34351	62.58872	43.1988
Total	ls :			8181.58350	245.72712	

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2012

Peak RetTime # [min]	Type Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 7.606	MM 0.1695	7015.00342	689.97290	42,6339
2 9.973	VB 0.2448	1210.97656	75.64639	7.3597
3 19.551	BB 0.8530	7037.68896	134.38174	42.7718
4 32.241	BP 1.1430	1190.37939	12.34473	7.2346
Totals :		1.64540e4	912.34577	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.818	VV	0.1859	1214.39258	101.27698	3.0567
2	10.358	VB	0.2718	1764.44409	99.05923	4.4413
3	21.247	BB	0.6600	1.74569e4	405.69849	43.9405
4	34.707	BP	1.1646	1.92927e4	263.38870	48.5615
Total	ls :			3.97284e4	869.42340	

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2012

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	8
1	. 103.438	MM	0.3734	903.75854	40.34322	28.80097
2	106.118	MM	0.3714	731.39673	32.81817	23.30815

Totals: 403.70015 18.43573

Peak F #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.024	VV	0.1435	1.80248e4	1956.45056	40.9709
2	8.113	VV	0.1605	1624.79565	157.28787	3.6932
3	8.471	VV	0.1764	2.36908e4	2086.98413	53.8501
4	9,291	MM	0.2019	653.66583	53.95366	1.4858
Totals	з:			4.39940e4	4254.67622	

S19

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2012

Peak KetTime	Type wiath	ALEd	петдис	ALEa
# [min]	[min]	[mAU*s]	[mAU]	90
		-		
1 32.397	BB 0.856	3 2.85753e4	501.81989	41.8272
2 45.317	PB 1.325	9 5724.61914	64.97627	8,3794
3 58.022	BB 2.026	5 2.82737e4	206.61603	41.3857
4 103.525	BV 3.505	8 5743.88037	19.21327	8.4076
Totals :		6.83174e4	792.62546	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.672	BB	0.9184	2500.02026	40.71522	1.8449
2	45.532	BB	1.3612	4118.64160	45.88574	3.0393
3	58.243	BB	2.0002	5.87385e4	418.81528	43.3452
4	102.804	MM	5.1464	7.01561e4	227.20055	51.7706
Tota	ls :			1.35513e5	732.61678	

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

4 34.530 MM 0.2647 1701.15063 107.11023 49.81991

Totals : 3414.59981 179.31537

