Electronic Supplementary Information

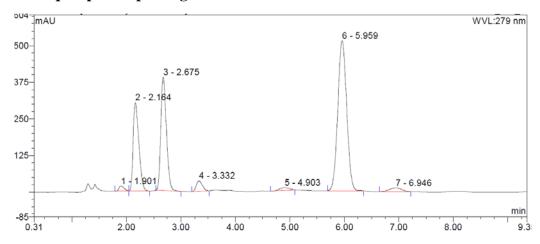
Cobalt Schiff base with ionic substituents on ligand as an efficient catalyst for the oxidation of 4-methyl guaiacol to vanillin

Jinghui Hu^a, Yifan Hu^a, Jianyong Mao^b, Jia Yao^b, Zhirong Chen^a, Haoran Li a,b,*

^aState Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China ^bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

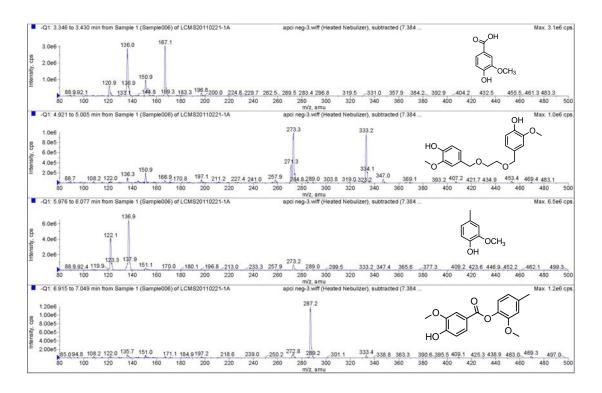
*Coreesponding Author. Email: lihr@zju.edu.cn

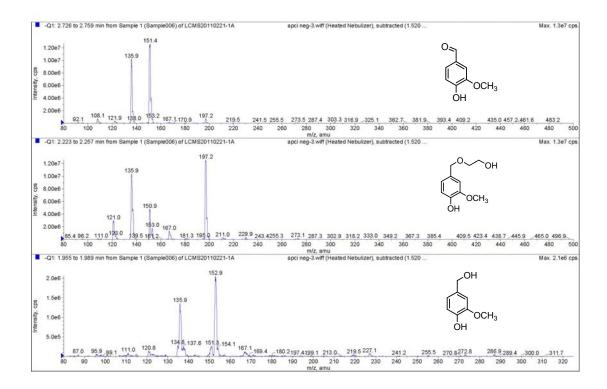
Supporting information		
Experimental materials and methods	S2	
2. Reaction medium analysis	S2	
3. The liquid phase spectrogram of the 5h reaction solution	S 3	
4. The corresponding mass spectrogram of the above liquid phase peaks	S3-S4	
5. Effect of temperature	S4-S5	


1. Experimental materials and methods

All the chemicals were of AR grade. They were commercially purchased from Sigma-Aldrich, Acros and used without further treatment. FT-IR spectra were recorded on a Bruker APEX-III spectrometer using KBr pellets in 400-4000cm⁻¹ region. ESI-MS analysis was performed on a Bruker Esquire 3000 (Bruker-Franzen Analytik, Bermen, Germany) equipped with an ion trap analyzer system. ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) analysis was performed on a Perkin-Elmer ELAN 6100, equipped with a standard pneumatic nebulizer and an automatic sampler as used. Indium was used as internal standard in order to correct potential instrument drift.

2. Reaction medium analysis


A 5.0 cm diameter, two-bladed impeller was used for stirring at approximately 1000 r.p.m. The end of the tube was positioned about 1 cm above the impeller blades. The mixture was left to stabilize at this temperature for a further 1 h, and then the oxygen was introduced (40 ml min-1) to initiate the reaction. About 0.5 ml of sample withdrawn from the reaction mixture was acidified by hydrochloric acid (1:1, volume ratio) to pH =2~3 and diluted with methanol. The diluted sample was analyzed on a HPLC (DIONEX, Ultamate3000, RP-18 column 25 cm column, UV 279 nm). The definition of conversion, selectivity and isolated yield are as follows: conversion = amount of reactant consumed divided by the amount of reactant charged; selectivity = the amount of a particular product formed divided by the total amount of reactant consumed; isolated yield= the amount of a isolated particular product divided by the total amount of reactant charged. It should be noted that the sample should be analyzed immediately after acidification to avoid autoxidation.



Analysis contions: HPLC-MS (chrompak: kromasil 100-5, C18, 150*4.6mm, E30334. Dionex Summit HPLC and Applied Biosystem API2000 combined), Mobile phase Methanol: Water=50:50(V/V), T=40°C, UV 279nm.

4. The corresponding mass spectrogram of the above liquid phase peaks.

5. Effect of temperature

To determine whether reaction temperatures have any significant effect on the oxidation, reaction temperatures from 55 °C to 95 °C (Table 1, entries 1–5) were investigated. It seems that the reaction time and selectivity increased as the temperature decreased from 95 °C to 65 °C, and the selectivity reached a maximum at 65 °C and then decreased. However, when the temperature was lower than 65 °C, the reaction time increased remarkably. This may be the fact that higher temperature enhanced gas-liquid transfer and shortened the reaction time. However, when the temperature was higher than 85 °C, the over-oxidation product increased remarkably. Those results showed that temperature was also a key factor in this reaction, where a suitable temperature was 75 °C for the Co-[Salen-Py][PF₆]₂ catalyst system.

Table S1. Influence of temperature in the oxidation of 2-methoxy-4-methyl phenol

Entry	Temperature (°C)	Time (h)	Conv. (%)	Sel. (%)
1	55	42	100	82
2	65	30	100	90
3	75	18	100	86
4	85	15	100	75
5	95	9	100	70

Reaction conditions: 4-methyl guaiacol (40g; 290 mmol), molecular oxygen flow rate (40ml/min), stirring rate 1000 r.p.m., NaOH (38.3 g; 957 mmol), ethylene glycol (155 g), water 20g, Co-[Salen-Py][PF $_6$]₂ (1.0 g; 1.38 mmol).