Promoting effect of SnO_x on selective conversion of cellulose to polyols over bimetallic Pt-SnO_x/Al₂O₃ catalysts

Tianyin Deng and Haichao Liu*

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering,

Peking University, Beijing 100871, China

Supplementary Information

Table S1 Cellulose conversion and product selectivity (not included in Table 2) on the $Pt-SnO_x/Al_2O_3$ catalysts with different Sn/Pt ratios.^{*a*}

	Conversion%	Selectivity%					
Sn/Pt		Glucose	Sorbitol	Arabitol	Erythriol	Cellobiose	Methane
			/Mannitol/Iditol	/Xylitol	/Theritol	alcohol	
Pt/Al ₂ O ₃	17.6	2.9	34.5/8.0/0.8	6.3/1.4	2.2/1.2	0.6	3.2
$Pt\text{-}SnO_x(0.1)/Al_2O_3$	16.3	0.6	68.9/7.7/1.4	4.9/2.0	1.1/0.6	1.5	3.9
$Pt\text{-}SnO_x(0.3)/Al_2O_3$	18.9	0.2	71.1/7.3/2.9	3.4/2.1	0.8/0.5	1.3	3.4
$Pt\text{-}SnO_x(0.5)/Al_2O_3$	17.1	0.5	68.4/8.6/5.7	1.6/2.5	0.7/0.4	1.6	3.7
$Pt-SnO_x(1.0)/Al_2O_3$	17.8	0.3	60.5/10.6/2.3	1.1/2.3	2.9/0.9	1.2	3.6
$Pt-SnO_x(1.5)/Al_2O_3$	19.6	0.9	36.9/4.3/2.2	1.0/1.6	3.8/1.4	0.6	3.6
$Pt\text{-}SnO_x(2.1)/Al_2O_3$	18.3	1.1	3.2	0.7/0.9	1.5/3.1	0.0	3.6
$Pt\text{-}SnO_x(3.8)/Al_2O_3$	22.5	1.3	0.8	0.0/1.6	1.1/0.0	0.0	2.6

^a 1 g cellulose, 0.4 g catalyst, 473 K, 50 mL H₂O, 6 MPa H₂, 30 min.

Fig. S1 The TEM image (a) and EDX patterns (b) for Pt-Sn alloy particles on $Pt-SnO_x(3.8)/Al_2O_3$ with a Sn/Pt atomic ratio of 3.8.

Fig. S2 TEM images and histograms of Pt particle size distributions for Pt-SnO_x/Al₂O₃ (2 wt% Pt) with different Sn/Pt atomic ratios of (a) 0.1, (b) 1.0 and (c) 2.1.

Fig. S3 Yields of C₂ (ethylene glycol and glycolic acid) and C₃ products (glycerol, 1,2-propanediol, acetol and lactic acid) for the five reaction cycles of glucose reaction (at ~100% conversion) on Pt-SnO_x(3.8)/Al₂O₃. Reaction conditions: 0.2 g glucose, 0.4 g Pt-SnO_x(3.8)/Al₂O₃ (~2 wt% Pt), 50 mL H₂O, 473 K, 6.0 MPa H₂, 30 min.

Fig. S4 XRD patterns of $Pt-SnO_x(3.8)/Al_2O_3$ (~2 wt% Pt) before and after five reaction cycles in glucose reaction, and of Al_2O_3 before and after hydrothermal treatment at 473 K and 6 MPa H₂ for 30 min.