Supplementary Information

Transition metal-free, NaO^tBu-O₂–mediated one-pot cascade oxidation of allylic alcohols to α,β-unsaturated carboxylic acids

Sun Min Kim, Young Sug Kim, Dong Wan Kim and Jung Woon Yang*

Department of Energy Science (DOES), Sungkyunkwan University Suwon 440-746, Korea E-mail: jwyang@skku.edu; Fax: (+82)-31-299-4279; Tel: (+82)-31-299-4276

Contents

General Methods and Experimental Procedure	S2
Characterization Data for Products	S 4
References	S10
¹ H NMR and ¹³ C NMR Spectra of Products	S11

General Methods

Unless stated otherwise, reactions were carried out under a dry argon atmosphere in vacuum-flame dried glassware. Thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254. ¹H NMR spectra were recorded on a Varian at 300 MHz in CDCl₃ (δ 7.26 ppm) or DMSO-*d*₆ (δ 2.50 ppm), ¹³C NMR spectral measurements were performed at 75 MHz using CDCl₃ (δ 77.16 ppm) or DMSO-*d*₆ (δ 39.52 ppm). The terms m, s, d, t, q, quint., and sept. represent multiplet, singlet, doublet, triplet, quadruplet, quintuplet, and septet, respectively, and the term br means a broad signal. Commercial grade reagents and solvents were used without further purification.

The preparation of cinnamyl alcohol by HWE reaction and DIBAL-H reduction

Starting material was prepared by us using the most convenient way reported in the literature.¹

General Procedure for Horner-Wadsworth-Emmons Reaction

DBU (1.59 g, 10.5 mmol) was added to a flame-dried round bottom flask containing triethyl phosphonoacetate (1.57 g, 7 mmol), and the reaction mixture was maintained at room temperature for 15 min. The aldehyde (7.7 mmol) was added dropwise, and the reaction mixture was stirred overnight. After completion of the reaction, it was quenched with water and, extracted with Et₂O (30 mL×3). The combined organic layers were dried over MgSO₄ and concentrated under vacuum. The pure α , β -unsaturated ester was obtained by column chromatography.

General Procedure for DIBAL-H Reduction

 α , β -Unsaturated ester (4 mmol) was slowly added to a flame-dried round bottom flask pre-cooled to -78 °C containing a solution of 1.0 M DIBAL-H in hexane (10.8mL, 10.8 mmol) in CH₂Cl₂. After completion of the reaction, it was quenched with water and, extracted with CH₂Cl₂ (30 mL×3). The combined organic layers were dried over MgSO₄ and concentrated under vacuum. The pure *trans*-cinnamyl alcohol was obtained in almost quantitative yield.

Typical procedure for the oxidation of trans-cinnamyl alcohol 1a to cinnamic acid 2a

NaO'Bu (192 mg, 2 mmol) was added to a suspension of cinnamyl alcohol **1a** (132 mg, 1 mmol) in 3 mL of dry toluene at room temperature under oxygen atmosphere. The reaction was stirred until TLC analysis indicated complete consumption of the starting material, and then the reaction mixture was quenched with 5% HCl and, extracted with EtOAc (50 mL×3). The combined organic layers were dried over MgSO₄ and concentrated under vacuum. The pure *trans*-cinnamic acid **2a** (91%) was obtained by column chromatography.

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 91%; ¹H NMR (300 MHz, CDCl₃) δ : 7.82 (d, J = 15.9 Hz, 1H), 7.65-7.54 (m, 2H), 7.5-7.36 (m, 3H), 6.48 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.66, 144.01, 134.32, 130.26, 128.96, 128.24, 119.35 ppm.

trans-3-(naphthalen-2-yl)acrylic acid (Table 2, Entry 2)

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 75%; ¹H NMR (300 MHz, DMSO- d_6) δ : 8.13 (s, 1H), 7.95-7.84 (m, 4H), 7.8 (d, J = 15.9 Hz, 1H), 7.53-7.51 (m, 2H), 6.7 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.78, 144.01, 133.77, 132.98, 131.95, 129.71, 128.57, 128.51, 127.72, 127.26, 126.76, 123.96, 119.67 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 99%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.8-7.66 (m, 2H), 7.58 (d, J = 16.2, 1H), 7.3-7.13 (m, 2H), 6.47 (d, J = 16.2 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.68, 163.28 (d, J = 246.98 Hz), 142.79, 131.00 (d, J = 3.15 Hz), 130.53 (d, J = 8.6 Hz), 119.24, 115.94 (d, J = 21.7 Hz) ppm.

trans-4-chlorocinnamic acid (Table 2, Entry 4)

Physical and spectroscopic data were identical to previous literature reports for this compound.³

Yield: 99%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.76 (d, J = 8.7 Hz, 2H), 7.57 (d, J = 15.9 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 6.56 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.59, 142.56, 134.87, 133.3, 129.9, 128.98, 120.22 ppm.

trans-4-bromocinnamic acid (Table 2, Entry 5)

Physical and spectroscopic data were identical to previous literature reports for this compound.⁵

Yield: 93%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.62 (d, J = 15.6 Hz, 1H), 7.66-7.51 (m, 5H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.42, 142.59, 133.55, 131.85, 130.11, 123.53, 120.16 ppm.

trans-4-(trifluoromethyl)cinnamic acid (Table 2, Entry 6)

Physical and spectroscopic data were identical to previous literature reports for this compound.⁵

Yield: 96%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.92 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 15.9 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.88, 142.59, 138.88, 130.64, 130.54 (q, J = 31.78 Hz), 139.308, 126.19 (q, J = 3.8 Hz), 122.81 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.³

Yield: 85%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.88 (d, J = 16.2 Hz, 1H), 7.54-7.38 (m, 2H), 7.37-7.28 (m, 2H), 6.56 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.85, 139.40, 134.29, 132.56, 132.13, 130.51, 128.74, 128.27, 122.86 ppm.

trans-3-chlorocinnamic acid (Table 2, Entry 8)

Physical and spectroscopic data were identical to previous literature reports for this compound.⁵

Yield: 93%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.76 (s, 1H), 7.67-7.51 (m, 1H), 7.56 (d, J =15.9 Hz, 1H), 7.48-7.36 (m, 2H), 6.6 (d, J =16.2 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.39, 142.32, 136.55, 133.80, 130.64, 129.81, 127.82, 126.75, 121.03 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 37%; ¹H NMR (300 MHz, DMSO- d_6) δ : 8.4-8.18 (m, 2H), 8.09-7.9 (m, 2H), 7.68 (d, J = 15.9 Hz, 1H), 6.73 (d, J = 16.2 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.03, 147.96, 141.34, 140.75, 129.29, 123.93, 123.61 ppm.

trans-4-methylcinnamic acid (Table 2, Entry 10)

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 97%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.57 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 16.2 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 6.46 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.81, 144.02, 140.20, 131.61, 129.58, 128.22, 118.18, 21.05 ppm.

trans-3-methylcinnamic acid (Table 2, Entry 11)

Physical and spectroscopic data were identical to previous literature reports for this compound.³

Yield: 97%; ¹H NMR (300 MHz, CDCl₃) δ : 7.77 (d, J = 15.9 Hz, 1H), 7.39-7.32 (m, 4H), 6.44 (d, J = 15.9 Hz, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.60, 144.04, 138.15, 134.17, 130.92, 128.77, 128.64, 125.41, 119.02, 20.83 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 67%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.62 (d, J = 8.4, 2H), 7.55 (d, J = 16.2, 1H), 6.96 (d, J = 8.4, 2H), 6.68 (d, J = 15.9, 1H), 3.78 (s, 3H) ppm; 13C NMR (75 MHz, DMSO- d_6) δ : 167.88, 160.98, 143.77, 129.95, 126.88, 116.56, 114.38, 55.30 ppm.

trans-3-methoxycinnamic acid (Table 2, Entry 13)

Physical and spectroscopic data were identical to previous literature reports for this compound.³

Yield: 97%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.56 (d, J = 16.2, 1H), 7.37-7.17 (m, 3H), 6.97 (d, J = 6.9, 1H), 6.55 (d, J = 15.9, 1H), 3.78 (s, 3H) ppm; 13C NMR (75 MHz, DMSO- d_6) δ : 167.57, 159.61, 143.88, 135.68, 129.92, 120.75, 119.59, 116.24, 112.93, 55.22 ppm

Physical and spectroscopic data were identical to previous literature reports for this compound.³

Yield: 47%; ¹H NMR (300 MHz, CDCl₃) δ: 7.17-7 (m, 1H), 5.88-5.78 (m, 1H), 2.31-2.14 (m, 2H), 1.56-1.41 (m, 2H), 1.36-1.28 (m, 4H), 0.93-0.87 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ: 172.54, 153.14, 120.55, 32.41, 31.40, 27.62, 22.52, 14.05 ppm.

trans-a-methylcinnamic acid (Table 2, Entry 15)

Physical and spectroscopic data were identical to previous literature reports for this compound.²

Yield: 61%; ¹H NMR (300 MHz, CDCl₃) δ : 7.84 (d, J = 1.2 Hz, 1H), 7.46-7.40 (m, 5H), 2.16 (d, J = 1.5Hz, 3H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 169.42, 137.75, 135.66, 129.63, 128.85, 128.52 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.⁵

Yield: 15%; ¹H NMR (300 MHz, CDCl₃) δ: 9.58 (s, 1H), 7.55-7.42 (m, 5H), 7.27 (s, 1H), 2.08 (s, 3H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆) δ: 195.81, 150.12, 138.68, 136.37, 130.28, 129.82, 128.95, 11.2 ppm.

Physical and spectroscopic data were identical to previous literature reports for this compound.⁶

¹H NMR (300 MHz, CDCl₃) δ: 9.98 (s, 1H), 7.83 (d, 2H, J = 8.1 Hz), 7.52 (d, 2H, J = 8.1 Hz), 6.70 (d, 1H, J = 15.9 Hz), 6.53 (dt, 1H, J = 15.9, 5.1 Hz), 4.39 (s, 1H), 1.81 (br, 1H) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ: 191.78, 142.81, 135.38, 132.39, 130.17, 129.35, 126.89, 83.29 ppm.

trans-4-(2-carboxyvinyl)benzoic acid

Physical and spectroscopic data were identical to previous literature reports for this compound.⁷

Yield: 89%; ¹H NMR (300 MHz, DMSO- d_6) δ : 7.95 (d, 2H, J = 8.4 Hz), 7.81 (d, 2H, J = 8.4 Hz), 7.64 (d, 1H, J = 15.9 Hz), 6.64 (d, 1H, J = 16.2 Hz) ppm; ¹³C NMR (75 MHz, DMSO- d_6) δ : 167.44, 166.97, 142.77, 138.45, 131.94, 129.87, 128.41, 121.69 ppm.

References

- 1. D. J. Vyas and M. Oestreich, Chem. Commun., 2010, 46, 568.
- 2. T. Fukuyama, M. Arai, H. Matsubara and I. Ryu, J. Org. Chem., 2004, 69, 8105.
- 3. S. T. Kemme, T. Šmejkal and B. Breit, Adv. Synth. Catal., 2008, 350, 989.
- 4. C. Pardin, J. N. Pelletier, W. D. Lubell and J. W. Keillor, J. Org. Chem., 2008, 73, 5766.
- 5. The corresponding product 8 was purchased from Sigma-Aldrich.
- 6. N. Kanbayashi and K. Onitsuka, Angew. Chem., Int. Ed., 2011, 50, 5197.
- 7. Z. Du, W. Zhou, F. Wang and J. X. Wang, Synlett, 2011, 3, 369.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2012

