Supporting information

For

Cascade [4+1] annulation via greener nitrogen ylide in water: Synthesis of bicyclic and tricyclic fused dihydrofuran

Atul Kumar*, Suman Srivastava, Garima Gupta

^aMedicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India, ^bDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi

Contents

- General remarks
- General experimental procedure
- Characterization data for compounds
- Copies of ¹H and ¹³C NMR

General remarks

Commercially available *N*-methylimidazole from Aldrich was used. Progress of reactions was monitored by thin layer chromatography (TLC). NMR spectra were recorded in d_6 -DMSO or CDCl₃ at 300 and 200 MHz (based on availability of instruments) 75 and 50 MHz (for ¹³C) respectively on Bruker Avance DPX-300 MHz and Bruker Avance DPX-200 MHz. Chemical shifts are reported in δ (ppm) relative to TMS (¹H) or CDCl₃ (¹³C) as internal standards. Integrals are in accordance with assignments; coupling constants are given in Hz. Yields refer to quantities obtained after chromatography.

General experimental procedure

Typical procedure for the preparation of 1-methyl-3-phenacylimidazolium bromide (3): A solution of 8.2 g (0.1 mol) of *N*-methylimidazole and 20.0 g (0.1 mol) of phenacylbromide in 300 ml of ether was allowed to stand at room temperature for 16h. The solids, which separated, was collected and then recrystallized from acetonitrile to give 27.0 g (95%) of 1-Methyl-3-phenacylimidazolium bromide as white powder.

Representative one pot procedure for the synthesis of 6a-h, 8a-d, 10a-j:

A mixture of substituted aldehyde (1 mmol), 4-hydroxy coumarin / 5, 5 dimethyl, 1, 3cyclohexanedione / 1, 3-cyclohexanedione / 4-hydroxy-6-methyl-2*H*-pyran-2-one (1 mmol) and *N*-methyl imidazole (0.5 mmol) in water (5 ml) was allowed to reflux for 1h at 100°C. After that 1-methyl-3-phenacylimidazolium bromide (1 mmol) was added and stirring was continued for 1h at 100°C. After completion of reaction as indicated on TLC, the reaction mixture was extracted with ethyl acetate and water. Organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was chromatographed on a silica gel column with a hexane-ethyl acetate mixture to afford dihydrofuran derivatives **6a-h**, **8a-d**, and **10a-j** in good to excellent yield.

Characterisation data of all the compounds

N-Methyl-3-phenacylimidazolium bromide (3):

m.p:153-155°C; 95% as white solid; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta = 9.11$ (s, 1H, CH), 8.07 (d, J = 7.3Hz, 2H, ArH), 7.80-7.73 (m, 3H, Ar-H), 7.66 (t, J = 7.7Hz, 2H, CH), 6.10 (s, 2H, CH₂), 3.96 (s, 3H, N-CH₃); ¹³C NMR (DMSO- d_6 , 50 MHz) $\delta = 191.4$, 137.7, 134.5, 133.7, 129.1, 128.2, 123.9, 123.3, 55.4, 36.0; Ana. Calcd for C₁₂H₁₃N₂OBr: C, 51.26; H, 4.66; N, 9.96. Found: C, 51.11; H, 4.58; N, 10.02.

2-(4-Bromobenzoyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)-one (6a): m.p: 152-

155°C; White solid; yield: 95% ¹H NMR (CDCl₃, 300MHz) δ = 7.72 (d, *J* = 8.9Hz, 2H, Ar-H), 7.63 (d, *J* = 7.1Hz, 2H, ArH), 7.37 (d, *J* = 7.3Hz, 3H, ArH), 7.25 (d, *J* = 8.8Hz, 2H, ArH), 6.14 (s 1H, CH), 5.93 (d, *J* = 4.8Hz, 1H, CH), 4.63 (d, *J* = 4.6Hz, 1H, CH), 2.29 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) δ = 191.5, 170.9, 166.8, 160.7, 139.7, 132.4, 130.5, 129.3, 128.2, 127.5, 102.5, 95.5, 92.2, 48.3,

20.6; MS (ESI+) m/z: 411.0 (M+H)⁺ Ana. Calcd for C₂₁H₁₅BrO₄: C, 61.33; H, 3.68; Found: C, 61.38; H, 3.60.

2-Benzoyl-3-(4-fluorophenyl)-6-methyl-2*H***-furo[3,2-c]pyran-4(3***H***)-one** (**6b**): m.p:135-

140°C; White solid; yield: 86%; ¹H NMR (CDCl₃, 300MHz) δ = 7.85 (d, *J* = 7.1Hz, 2H, Ar-H), 7.64 (d, *J* = 6.5Hz, 1H, ArH), 7.51 (d, *J* = 7.4Hz, 2H, ArH), 7.24 (dd, *J* = 5.4Hz, 2H, ArH), 7.08 (m, 2H, ArH), 6.16 (s, 1H, CH), 5.96 (d, *J* = 4.9Hz, 1H, CH), 4.63 (d, *J* = 4.7Hz, 1H, CH), 2.30 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) δ = 192.3, 171.1, 166.9, 164.9, 160.8, 160.0, 135.6, 134.5, 133.2, 129.3, 129.1, 116.4,

116.0, 102.4, 95.6, 92.3, 47.7, 20.6; MS (ESI+) m/z: 351.1 (M+H)+ Ana. Calcd for C₂₁H₁₅FO₄: C, 71.99; H, 4.32; Found: C, 71.91; H, 4.38.

3-(4-Chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2*H*-furo[3,2-c]pyran-4(3*H*)-one

(6c): m.p:147-150°C; white solid; yield: 82%; ¹H NMR (CDCl₃, 300MHz) $\delta = 7.82$ (d, J = 8.6Hz, 2H, Ar-H), 7.35 (d, J = 8.4Hz, 2H, ArH), 7.20 (d, J = 8.4Hz, 2H, ArH), 6.95 (d, J = 8.9Hz, 2H, Ar-H), 6.15 (s, 1H, CH), 5.90 (d, J = 5.0Hz, 1H, CH), 4.62 (d, J = 4.8Hz, 1H, CH), 3.88 (s, 3H, OCH₃), 2.29 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 190.6$, 171.2, 166.9, 164.6, 160.8, 138.5,

133.9, 131.5, 129.4, 129.0, 126.0, 114.8, 102.2, 95.6, 91.9, 55.7, 48.0, 20.7; MS (ESI+) *m/z*: 397.1 (M+H)⁺. Ana. Calcd for C₂₂H₁₇ClO₅: C, 66.59; H, 4.32; Found: C, 66.54; H, 4.28.

2-(Biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)-one (6d): m.p:155-

160°C; white solid; yield: 91%; ¹H NMR (CDCl₃, 300MHz) δ = 7.85 (d, *J* = 8.3Hz, 2H, Ar-H), 7.64 (d, *J* = 8.2Hz, 2H, ArH), 7.56 (d, *J* = 6.9Hz, 2H, ArH), 7.43-7.34 (m, 3H, ArH), 7.29 (s, 2H, Ar-H), 7.18 (t, *J* = 7.9Hz, 3H, ArH), 6.09 (s, 1H, CH), 5.90 (d, *J* = 5.0Hz, 1H, CH), 4.60 (d, *J* = 4.8Hz, 1H, CH), 2.23 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) δ =191.8, 171.2, 167.0, 160.8, 147.2, 139.4, 138.4, 134.0, 131.8, 129.7, 129.5, 129.2, 129.0, 128.8, 127.7, 127.4,

102.3, 95.6, 92.2, 47.9, 20.7; MS (ESI+) *m/z*: 443.1 (M+H)+ Ana. Calcd for C₂₇H₂₀O₄ : C, 79.40; H, 4.94; Found: C, 79.45; H, 4.97.

2-(Biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2*H*-furo[3,2-c]pyran-4(3*H*)-one (6e) :

m.p:125-130°C; as white solid; Yield: 90% ¹H NMR (CDCl₃, 300 MHz) $\delta = 8.05$ (d, J = 8.3Hz, 2H, ArH), 7.74 (d, J = 8.3Hz, 2H, Ar-H), 7.65 (d, J = 7.0Hz, 2H, ArH), 7.51-7.43 (m, 4H, ArH), 6.38 (s, 1H, ArH), 6.31 (d, J = 2.8Hz, 1H, ArH), 6.20 (d, J = 4.6Hz, 1H, CH), 6.14 (s, 1H, CH), 4.86 (d, J = 4.4Hz, 1H, CH), 2.30 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 191.6$, 171.6, 167.0, 160.8, 151.3, 147.2, 142.8, 139.5, 131.8, 129.8, 129.1, 128.7, 127.7, 127.4,

111.0, 108.2, 99.6, 95.7, 88.9, 41.9, 20.7; MS (ESI⁺) m/z: 399.1 (M+H)+ Ana. Calcd for C₂₅H₁₈O₅: C, 75.37; H, 4.55; Found: C, 75.39; H, 4.50.

2-(4-Methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2*H*-furo[3,2-c]pyran-4(3*H*)-one (6f):

m.p:160-165°C; White solid; yield: 80%; ¹H NMR (CDCl₃, 300 MHz) δ = 7.96 (d, *J* = 8.0Hz, 1H, Ar-H), 7.86-7.79 (m, 4H, ArH), 7.47-7.41 (m, 3H, ArH), 7.33 (d, *J* = 6.9Hz, 1H, ArH), 6.87 (d, *J* = 8.8Hz, 2H, Ar-H), 6.12 (s, 1H, CH), 5.90 (s, 1H, CH), 5.73 (s, 1H, CH), 3.84 (s, 3H, OCH₃), 2.30 (s, 3H, CH₃);

¹³C NMR (CDCl₃, 50MHz) δ =190.8, 170.9, 166.5, 164.5, 161.0, 135.9, 134.2, 131.9, 131.3, 129.0, 128.5, 126.6, 125.9, 125.7, 123.2, 114.1, 102.3, 95.5, 91.8, 60.4, 55.6, 42.6, 20.6, 14.2;

MS (ESI+) *m*/*z*: 413.1 (M+H)+ Ana. Calcd for C₂₆H₂₀O₅: C, 75.72; H, 4.89; Found: C, 75.78; H, 4.85.

2-(4-Bromobenzoyl)-3-ferrocenyl-6-methyl-2*H*-furo[3,2-c]pyran-4(3*H*)-one (6g): m.p:

142-145°C; yellow solid; yield: 89%; ¹H NMR (CDCl₃, 300MHz) $\delta = 7.95$ (d, J = 8.5Hz, 2H, Ar-H), 7.71 (d, J = 8.4Hz, 2H, ArH), 6.08 (d, J = 3.9Hz, 1H, CH), 6.01 (s, 1H, CH), 4.67 (d, J = 3.7Hz, 1H, CH), 4.26 (s, 1H, Fc-H), 4.21-4.12 (m, 8H, Fc-H), 2.27 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 192.3$, 169.8, 166.3, 161.0, 132.8, 132.4, 130.7, 129.6, 102.8, 95.4, 91.3, 89.6, 69.6, 69.2, 68.8, 68.5, 67.0, 41.0, 20.6; MS (ESI+) *m/z*: 519.2 (M+H)+ Ana.

Calcd for C₂₅H₁₉FeO₄Br: C, 57.84; H, 3.69; Found: C, 57.75; H, 3.78.

2-(Biphenylcarbonyl)-3-ferrocenyl-6-methyl-2*H*-furo[3,2-c]pyran-4(3*H*)-one(6h):

m.p:175-180°C; yellow solid; yield: 86%; ¹H NMR (CDCl₃, 300MHz) $\delta = 8.07$ (d, J = 8.4Hz, 2H, Ar-H), 7.70 (d, J = 8.3Hz, 2H, ArH), 7.58 (t, J = 6.8Hz, 2H, ArH), 7.43-7.33 (m, 3H, ArH), 6.11 (d, J = 3.8Hz, 1H, CH), 5.96 (s, 1H, CH), 4.61 (d, J = 3.7Hz, 1H, CH), 4.22-4.05 (m, 9H, Fc-H), 2.18 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 192.7$, 170.2, 166.3, 161.3, 147.0, 139.6, 132.7, 129.9, 129.2, 128.7, 127.7, 127.4, 103.0, 95.6, 91.4, 89.1, 68.9, 68.4, 68.1, 67.7, 66.4, 41.3, 20.6; MS (ESI+) *m/z*: 516.1 (M+H)+ Ana. Calcd for C₃₁H₂₄FeO₄: C, 72.11; H, 4.68;

Found: C, 72.24; H, 4.58.

2-Benzoyl-3-isopropyl-2*H*-furo[3,2-c]chromen-4(3*H*)-one (8a):

m.p: 98-100°C; white solid; yield: 92%; ¹H NMR (CDCl₃, 300MHz) $\delta = 8.04$ (d, J = 7.3Hz, 2H, Ar-H), 7.69-7.51 (m, 4H, ArH), 7.39 (d, J = 8.3Hz, 1H, ArH), 7.30 (t, J = 7.3Hz, 2H, ArH), 5.94 (d, J = 4.6Hz, 1H, CH), 3.90 (t, J = 3.9Hz, 1H, CH), 2.54-2.46 (m, 1H, CH), 1.01-0.98 (m, 6H, 2xCH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 193.7$, 166.2,

160.1, 155.0, 134.1, 133.9, 132.6, 129.1, 128.9, 124.0, 122.8, 116.8, 112.0, 103.8, 86.6, 49.0, 29.3, 19.9, 18.1; MS (ESI+) *m/z*: 335.1 (M+H)+ Ana. Calcd for C₂₁H₁₈O₄: C, 75.43; H, 5.43; Found: C, 75.40; H, 5.49.

2-(4-Methoxybenzoyl)-3-phenyl-2*H***-furo[3,2-c]chromen-4(3***H***)-one (8b**): m.p : 175-180°C; white solid; yield: 87%; ¹H NMR (CDCl₃, 300MHz) δ = 7.89 (t, *J* = 8.9Hz, 3H, Ar-H), 7.62 (t, *J* = 7.1Hz, 1H, ArH), 7.40-7.32 (m, 7H, ArH), 6.97 (d, *J* = 8.8Hz, 2H, ArH), 6.13 (d, *J* = 4.9Hz, 1H, CH), 4.81(d, *J* = 4.9Hz, 1H, CH), 3.89 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 50MHz) δ = 190.7, 166.6, 164.6, 159.5, 155.5, 139.8, 133.0, 131.6, 130.2, 129.3, 128.2, 127.7, 126.1, 124.2, 123.3, 117.1, 114.4, 112.3, 105.5, 92.6, 55.7, 49.6;

MS (ESI+) *m/z*: 399.1 (M+H)+ Ana. Calcd for C₂₅H₁₈O₅: C, 75.37; H, 4.55; Found: C, 75.45; H, 4.39.

3-(2,4-Dichlorophenyl)-2-(4-methoxybenzoyl)-2*H*-furo[3,2-c]chromen-4(3*H*)-one (8c) :

m.p:150-154°C; white solid; yield: 89%; ¹H NMR (CDCl₃, 300MHz) $\delta = 7.99$ (d, J = 8.8Hz, 2H, Ar-H), 7.76 (d, J = 6.8Hz, 1H, ArH), 7.63-7.58 (m, 1H, ArH), 7.42 (d, J = 8.4Hz, 2H, ArH), 7.34-7.18 (m, 3H, ArH), 6.99 (d, J = 8.8Hz, 2H, ArH), 6.07 (d, J = 5.1Hz, 1H, CH), 5.45 (d, J = 5.0Hz, 1H, CH), 3.90 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 189.6$, 166.8, 164.6, 159.1, 155.4, 135.7, 134.4, 134.3, 133.1, 131.6, 130.4, 130.0,

127.9, 126.5, 124.2, 123.1, 117.1, 114.3, 112.0, 103.9, 90.6, 55.6, 45.3; MS (ESI+) *m/z*: 467.1 (M+H)+ Ana. Calcd for C₂₅H₁₆Cl₂O₅: C, 64.26; H, 3.45; Found: C, 64.32; H, 3.22.

3-Ferrocenyl,2-(4-methoxybenzoyl)-2*H*-furo[3,2-c]chromen-4(3*H*)-one (8d):

m.p :150-155°C; yellow solid; yield: 88%; ¹H NMR (CDCl₃, 300MHz) $\delta = 8.16$ (d, J = 8.6Hz, 2H, Ar-H), 7.71 (d, J =7.6Hz, 1H, ArH), 7.58 (t, J = 7.5Hz, 1H, ArH), 7.38 (d, J =8.3Hz, 1H, ArH), 7.29 (d, J = 7.9Hz, 1H, ArH), 7.06 (d, J =8.6Hz, 2H, ArH), 6.31 (d, J = 3.9Hz, 1H, CH), 4.89 (d, J =3.9Hz, 1H, CH), 4.36 (s, 1H, Fc-H), 4.23-4.11 (m, 8H, Fc-H), OCH₃ 3.92 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 191.2$,

165.1, 164.6,159.8, 155.2, 132.7, 131.8, 127.1, 124.1, 123.0, 117.0, 114.4, 112.4, 106.0, 91.5, 88.7, 68.8, 68.4, 68.3, 66.2, 55.8, 42.1; MS (ESI+) *m/z*: 507.1 (M+H)+ Ana. Calcd for C₂₉H₂₂FeO₅: C, 68.79; H, 4.38; Found: C, 68.85; H, 4.25.

2-Benzoyl-3-(3-nitrophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (10a):

m.p:145-150°C; 88% as white solid; ¹H NMR (CDCl₃, 300 MHz) $\delta = 8.13$ (t, J = 7.9Hz, 2H, ArH), 7.86 (d, J = 7.4Hz, 2H, Ar-H), 7.66-7.45 (m, 5H, ArH), 5.85 (d, J = 5.1Hz, 1H, CH), 4.68 (d, J =4.4Hz, 1H, CH), 2.72 (s, 2H, CH₂), 2.34-2.32 (m, 2H, CH₂), 2.16-2.12 (m, 2H, CH₂); ¹³C NMR (CDCl₃, 50MHz) $\delta = 194.2$, 192.2, 148.6, 143.1, 134.4, 134.0, 133.2, 129.9, 129.0, 122.6, 122.1, 115.5, 90.9, 47.8, 36.6, 23.8, 21.6; MS (ESI+) *m/z*: 364.1 (M+H)+

Ana. Calcd for C₂₁H₁₇NO₅: C, 69.41; H, 4.72; N, 3.85; Found: C, 69.26; H, 4.65; N, 3.79. **2-Benzoyl-3-(4-methoxyphenyl)-2,3,6,7-tetrahydrobenzofuran-4(5***H***)-one (10b)**

m.p:115-120°C; 85% as white solid; ¹H NMR (CDCl₃, 300 MHz) δ = 7.83 (d, *J* = 7.3Hz, 2H, ArH), 7.62 (t, *J* = 7.1Hz, 1H, Ar-H), 7.47 (t, *J* = 7.7Hz, 2H, ArH), 7.16 (d, *J* = 8.5Hz, 2H, ArH), 6.89 (d, *J* = 8.6Hz, 2H, ArH), 5.83 (d, *J* = 4.6Hz, 1H, CH), 4.36 (d, *J* = 3.8Hz, 1H, CH), 3.79 (s, 3H, OCH₃), 2.70 (s, 2H, CH₂), 2.34-2.29 (m, 2H, CH₂), 2.12-2.08 (m, 2H, CH₂); ¹³C NMR (CDCl₃, 50MHz) δ = 194.5, 193.1, 177.3, 159.1,

134.2, 133.4, 129.0, 128.5, 116.7, 114.5, 91.8, 55.4, 48.5, 36.9, 29.8, 24.0, 21.8; MS (ESI+) *m/z*: 349.1 (M+H)+ Ana. Calcd for C₂₂H₂₀O₄: C, 75.84; H, 5.79; Found:C, 75.85; H, 5.70.

2-Benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (10c): m.p:160-

165°C; 89% as white solid; ¹H NMR (CDCl₃, 300 MHz) δ = 7.82 (d, *J* = 7.6Hz, 2H, ArH), 7.63 (t, *J* = 7.0Hz, 1H, Ar-H), 7.47 (t, *J* = 7.2Hz, 2H, ArH), 7.31 (d, *J* = 7.6Hz, 2H, ArH), 7.17 (d, *J* = 7.8Hz, 2H, ArH), 5.81 (d, *J* = 4.6Hz, 1H, CH), 4.43 (d, *J* = 3.6Hz, 1H, CH), 2.69 (s, 2H, CH₂), 2.33-2.29 (m, 2H, CH₂), 2.14-2.12 (m, 2H, CH₂); ¹³C NMR (CDCl₃, 50MHz) δ = 194.06, 192.48, 177.38, 139.59, 134.13, 133.12, 128.98, 128.80, 128.65, 115.92, 91.12, 48.01, 36.55,

23.70, 21.53; MS (ESI+) *m/z*: 353.1(M+H)+ Ana. Calcd for C₂₁H₁₇ClO₃: C, 71.49; H, 4.86; Found:C, 71.55; H, 4.81.

:

2-Benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (10d) : m.p:155-

158°C; 82% as white solid; ¹H NMR (CDCl₃, 300 MHz) δ = 7.82 (d, *J* = 7.4Hz, 2H, ArH), 7.63 (t, *J* = 7.3Hz, 1H, Ar-H), 7.47-7.32 (m, 7H, ArH), 7.16 (d, *J* = 8.5Hz, 2H, ArH), 6.96 (d, *J* = 8.5Hz, 2H, ArH), 5.83 (d, *J* = 4.6Hz, 1H, CH), 4.37 (d, *J* = 4.0Hz, 1H, CH), 2.70 (s, 2H, CH₂), 2.34-2.30 (m, 2H, CH₂), 2.12-2.08 (m, 2H, CH₂); ¹³C NMR (CDCl₃, 50MHz) δ = 194.4, 193.0, 177.3, 158.3, 137.0, 134.2, 133.6, 133.3, 129.0, 129.0, 128.7, 128.5, 128.1, 127.6, 116.6, 115.4, 91.8,

70.1, 48.4, 36.8, 23.9, 21.8; MS (ESI+) *m/z*: 395.2 (M+H)+ Ana. Calcd for C₂₇H₂₂O₃: C, 82.21; H, 5.62; Found:C, 82.25; H, 5.60.

2-Benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (10e) : m.p:

94-96°C; White solid; yield: 94%; ¹H NMR (CDCl₃, 300MHz) δ = 7.93 (d, *J* = 7.3Hz, 2H, ArH), 7.64 (t, *J* = 7.3Hz, 1H, Ar-H), 7.52 (t, *J* = 7.7Hz, 2H, Ar-H), 5.63 (d, *J* = 4.3Hz, 1H, CH), 3.43 (s, 1H, CH), 2.50-2.33 (m, 2H, CH₂), 2.22 (s, 2H, CH₂), 1.88-1.63 (m, 2H, CH), 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 2H, CH₂), 1.42-1.30 (m, 2H, CH₂), 1.42-1.30 (m, 2H, CH₂), 1.12 (s, 2H, CH₂), 1.42-1.30 (m, 2H, CH₂), 1.42-1.30 (m,

CH₃); ¹³C NMR (CDCl₃, 50MHz) δ = 193.4, 194.1, 176.2, 133.8, 128.8, 128.7, 88.8, 51.2, 42.9, 37.5, 35.2, 34.1, 28.9, 28.3, 19.4, 14.1; MS (ESI+) *m/z*: 313.2(M+H)+ Ana. Calcd for C₂₀H₂₄O₃: C, 76.89; H, 7.74; Found: C, 76.67; H, 7.65.

2-(4-Bromobenzoyl)-3-(2,5-dimethoxyphenyl)-6,6-dimethyl-2,3,6,7-

tetrahydrobenzofuran-4(5H)-one (10f): m.p:147-150°C; 87% as white solid; ¹H NMR

(CDCl₃, 300 MHz) $\delta = 7.73$ (d, J = 8.5Hz, 2H, ArH), 7.59 (d, J = 8.4Hz, 2H, Ar-H), 6.76 (s, 2H, ArH), 6.66 (s, 1H, ArH), 5.72 (d, J = 5.1Hz, 1H, CH), 4.81 (d, J = 4.4Hz, 1H, CH), 3.72 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 2.57-2.43 (m, 2H, CH₂), 2.25 (m, 2H, CH₂), 1.19 (s, 3H, CH₃), 1.15 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 193.7, 192.4, 176.8, 153.8, 150.9, 132.8, 132.0, 129.2, 115.0, 113.5, 112.7, 111.9, 90.2, 55.7, 51.3, 43.1, 37.8, 34.3, 29.2, 28.4;$

MS (ESI+) *m/z*: 485.1 (M+H)+ Ana. Calcd for C₂₅H₂₅BrO₅: C, 61.86; H, 5.19; Found: C, 61.88; H, 5.11.

2-Benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one

(**10g**): m.p:175-179°C; 84% as white solid; ¹H NMR (CDCl₃, 300 MHz) δ = 7.94-7.77 (m, 5H, ArH), 7.59-7.32 (m, 7H, Ar-H), 5.86 (s, 1H, CH), 5.45 (s, 1H, CH), 2.56 (s, 2H, CH₂), 2.27 (m, 2H, CH₂), 1.22 (s, 3H, CH₃), 1.17 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) δ = 193.7, 193.0, 176.0, 134.2, 133.8, 131.3, 129.4, 128.9, 128.3, 126.4, 125.9, 125.7, 123.4, 115.2, 91.5, 51.4, 37.9, 34.4, 29.2, 28.7; MS

(ESI+) *m*/*z*: 397.1; (M+H)+ Ana. Calcd for C₂₇H₂₄O₃: C, 81.79; H, 6.10; Found: C, 81.81; H, 6.14.

2-(4-Bromobenzoyl)-6,6-dimethyl-3-(thiophen-2-yl)-2,3,6,7-tetrahydrobenzofuran-

4(5*H***)-one (10h):** m.p:145-150°C; White solid, Yield, 86% ¹H NMR (CDCl₃, 300 MHz) $\delta = 7.79$ (d, J = 8.5Hz, 2H, ArH), 7.65 (d, J = 8.4Hz, 2H, Ar-H), 7.23 (d, J = 4.8Hz, 1H, ArH), 6.98 (dd, J = 3.4, 4.5Hz, 2H, ArH), 5.84 (d, J = 4.2Hz, 1H, CH), 4.78 (s, 1H, CH), 2.61-2.46 (m, 2H, CH₂), 2.24 (m, 2H, CH₂), 1.19 (s, 3H, CH₃), 1.15 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta =$

193.4,191.6, 176.4, 144.7, 132.4, 132.0, 130.5, 129.8, 127.4, 125.3, 124.9, 114.5, 91.4, 51.2, 43.8, 37.7, 34.3, 29.2, 28.2; MS (ESI+) *m/z*: 431.0 (M+H)+ Ana. Calcd for C₂₁H₁₉BrO₃S: C, 58.47; H, 4.44; Found: C, 58.41; H, 4.46.

2-Benzoyl-3-ferrocenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one(10i):

m.p:120-125°C; 88% as yellow solid; ¹H NMR (CDCl₃, 300 MHz) δ = 8.08 (d, *J* = 7.4Hz, 2H, ArH), 7.67-7.52 (m, 3H, Ar-H), 6.07 (d, *J* = 3.6Hz, 1H, CH), 4.47 (d, *J* = 3.3Hz, 1H, CH), 4.26 (s, 1H, Fc-H), 4.27-4.10 (m, 8H, Fc-H), 2.58-2.56 (m, 2H, CH₂), 2.43-2.26 (m, 2H, CH₂), 2.10-2.01(m, 2H, CH₂); ¹³C NMR (CDCl₃, 50MHz) δ = 194.5, 193.8, 176.1, 134.4, 134.1, 129.2, 129.0, 117.0, 90.5, 90.1, 68.7, 68.0, 66.6,

41.4, 37.0, 24.0, 21.6; MS (ESI+) *m/z*: 427.1 (M+H)+ Ana. Calcd for C₂₅H₂₂FeO₃: C, 70.44; H, 5.20; Found: C, 70.24; H, 5.29.

6, 6-Dimethyl-3-ferrocenyl-2-(4-methoxybenzoyl)-2, 3, 6, 7-tetrahydrobenzofuran-4 (5H)-2, 3, 6, 7-tetrahydrobenzofuran-4, 5H)-2, 5H)-

one (10j): m.p:124-128°C; yellow solid; yield: 87%; ¹H NMR (CDCl₃, 300 MHz) $\delta = 8.07$ (d, J = 8.8Hz, 2H, ArH), 7.03 (d, J = 8.8Hz, 2H, Ar-H), 6.05 (d, J = 3.7Hz, 1H, CH), 4.43 (d, J = 2.6Hz, 1H, CH), 4.20-4.09 (m, 9H, Fc-H), 3.90 (s, 3H, OCH₃), 2.50-2.36 (m, 2H, CH₂), 2.24 (s, 2H), 1.15 (s, 3H, CH₃), 1.12 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 50MHz) $\delta = 193.9$, 192,1, 175.5, 164.3, 131.5, 127.2, 115.4, 114.3, 91.2, 90.5, 68.7, 67.9, 67.8, 66.7, 55.7, 51.5, 41.4, 37.9, 34.1, 29.1, 28.3; MS (ESI+) *m/z*: 485.0 (M+H)+ Ana.

Calcd. for C₂₈H₂₈FeO₄: C, 69.43; H, 5.83; Found: C, 69.23; H, 5.78;

¹H and ¹³C spectra of all the compounds:

Fig 1: ¹H spectra of N-Methyl-3-phenacylimidazolium bromide:

Fig 2: ¹³C spectra of N-Methyl-3-phenacylimidazolium bromide:

Fig 3: ¹H spectra of 2-(4-bromobenzoyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)one:

Fig 4: ¹³C spectra of 2-(4-bromobenzoyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)one :

Fig 5: ¹H spectra of 2-benzoyl-3-(4-fluorophenyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)one:

Fig 6: ¹³C spectra of 2-benzoyl-3-(4-fluorophenyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)one:

Fig 7: ¹H spectra of 3-(4-chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2H-furo[3,2c]pyran-4(3H)-one

Fig 8: ¹³C spectra of 3-(4-chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2H-furo[3,2c]pyran-4(3H)-one

Fig 9:¹H spectra of 2-(biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)one:

Fig 10:¹³C spectra of 2-(biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)-one

Fig 11:¹H spectra of 2-(biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one

Fig 12: ¹³C spectra of (2-(biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one:

Fig 13:¹H spectra of 2-(4-methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2H-furo[3,2-c]pyran-4(3H)-one

:

Fig 14: ¹³C spectra of 2-(4-methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2H-furo[3,2-c]pyran-4(3H)-one:

Fig 15: ¹H spectra of 2-(4-bromobenzoyl)-3-ferrocenyl-6-methyl- 2H-furo[3,2-c]pyran-4(3H)-one

Fig 16: ¹³C spectra of 2-(4-bromobenzoyl)-3-ferrocenyl-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one

Fig 17: ¹H spectra of 2-(biphenylcarbonyl)-3-ferrocenyl-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one

Fig 18: ¹³C spectra of 2-(biphenylcarbonyl)-3-ferrocenyl 6-methyl- -2H-furo[3,2-c]pyran-4(3H)-one

Fig 19: ¹H spectra of 2-benzoyl-3-isopropyl-2H-furo[3,2-c]chromen-4(3H)-one:

Electronic Supplementary Material (ESI) for Green Chemistry This journal is O The Royal Society of Chemistry 2012

Fig 20: ¹³C spectra of 2-benzoyl-3-isopropyl-2H-furo[3,2-c]chromen-4(3H)-one:

Fig 21: ¹H spectra of 2-(4-methoxybenzoyl)-3-phenyl-2H-furo[3,2-c]chromen-4(3H)-one

Fig 22: ¹³C spectra of 2-(4-methoxybenzoyl)-3-phenyl-2H-furo[3,2-c]chromen-4(3H)-one

Fig 23: ¹H spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2c]chromen-4(3H)-one:

Fig 24: ¹³C spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2c]chromen-4(3H)-one

Fig 25: COSY spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2c]chromen-4(3H)-one:

A 1000.00 usec -1.00 dB 300.1312582 Mł 563 Hz 6214 Hz Ì .000 usec Current Data Parameters NAME suman imidazole EXPNO 41 PROCNO 1 50 sec sec SS CDCI3 0000000 sec CHANNEL f1 11.60 usec 23.20 usec 1000.00 usec CHANNEL f2 15.00 dB usec garp 13C ISec 00020000 128 00000400 0.00004000 3.39 0000 724 14982 02 00.0 ition 8 8 ST1CNT ZGOPTNS Acquis TD SOLVENT NS DS SWH FIDRES PULPROG 3 DELTA2 DELTA3 AQ DW DE CNST2 TA **CPDPR(** NUC2 P3 PCPD2 PL12 SFO2 PL1 PL1 SF01 SF01 F2 -.110 120 .140 20 40 50 60 70 80 100 130 -150 30 90 mdd .1 3.0 0. 3 വ ß с. С 3 4.0 4.0 ß S 4 4 0. 0 5 5 5 S 5 5 0 0 .9 .9 5. ഹ 9 9 0. 7.0 0 2 Ω 5. 5 7. -0 0 8 8 0 ß ß 8 8 9.0 0 6

60

50

mdd

20

30

40

Fig 26: HSQC spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)-one:

70

80

90

100.

110

120

130

140

150

Fig 27: HMBC spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)-one:

Fig 28: ¹H spectra of 3- ferrocenyl-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)-one:

Fig 29: ¹³C spectra of 3- ferrocenyl-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)-one:

Fig 30: ¹H spectra of 2-benzoyl-3-(3-nitrophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 31: ¹³C spectra of 2-benzoyl-3-(3-nitrophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 32. ¹H spectra of 2-benzoyl-3-(4-methoxyphenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 33: ¹³C spectra of 2-benzoyl-3-(4-methoxyphenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 34: ¹H spectra of 2-benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)one:

Fig 35: ¹³C spectra of 2-benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 36: ¹H spectra of 2-benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)one:

Fig 37: ¹³C spectra of 2-benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)one:

Fig 38: ¹H spectra of 2-benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 39: ¹³C spectra of 2-benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 40: ¹H spectra of 2-(4-bromobenzoyl)-3-(2,5-dimethoxyphenyl)-6,6-dimethyl-2,3,6,7tetrahydrobenzofuran-4(5H)-one :

Fig 41: ¹³C spectra of 2-(4-bromobenzoyl)-3-(2,5-dimethoxyphenyl)-6,6-dimethyl-2,3,6,7tetrahydrobenzofuran-4(5H)-one :

Fig 42: ¹H spectra of 2-benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 43: ¹³C spectra of 2-benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 44: ¹H spectra of 2-(4-bromobenzoyl)-6,6-dimethyl-3-(thiophen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 45: ¹³C spectra of 2-(4-bromobenzoyl)-6,6-dimethyl-3-(thiophen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 46: ¹H spectra of 2-benzoyl-3- ferrocenyl -2, 3, 6, 7-tetrahydrobenzofuran-4(5H)one:

Fig 47: ¹³C spectra of 2-benzoyl-3- ferrocenyl -2, 3, 6, 7-tetrahydrobenzofuran-4(5H)one :

Fig 48: ¹H spectra of 6,6-dimethyl-3-ferrocenyl-2-(4-methoxybenzoyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one:

Fig 49: ¹³C spectra of 6, 6-dimethyl, 3-ferrocenyl 2-(4-methoxybenzoyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one: