Microwave Heating for Rapid Conversion of Sugars and Polysaccharides to 5-chloromethyl furfural

⁵ S W Breeden, ^a J H Clark, ^a T J Farmer, ^a D J Macquarrie, ^{* a} J S Meimoun, ^b Y Nonne^c and J E S J Reid^a

Supplementary Information

Typical Experimental Procedure

- ¹⁰ 250 mg of fructose was charged into a 35 ml CEM microwave reactor vessel with a magnetic stirrer bar. To this 10 ml of 1,2dichloroethane and 5 ml concentrated HCl were added. The reaction vessel was sealed with a rubber lid (CEM) and placed in
- A CEM Discover SP Microwave Synthesiser. A fixed to temperature method protocol with 15 minute hold time at 80 °C and high stirring speed was used, with a 200 W max power setting and a typical ramp time of 2 minutes. After microwave heating the reaction mixture was passed into a separating funnel and the lower organic layer collected, filtered and the DCE
- ²⁰ removed *in vacou* yielding a light brown oil (143 mg, 71% yield, 98% purity by GC). ¹H NMR (CDCl₃, 400 MHz): 4.59 (s, 2 H, CH₂), 6.55 (d, J = 3.6 Hz, 1 H, Ar-H), 7.16 (d, J = 3.6 Hz, 1 H, Ar-H), 9.58 (s, 1 H, CHO) ppm. ¹³C NMR (CDCl₃, 100 MHz): 36.6 (CH₂), 112.1, 121.9 (Ar), 152.9 (Ar), 156.1 (Ar), 177.8
- ²⁵ (CHO) ppm. Spectroscopic data are in agreement with the literature.¹

Ball Milling Experimental Procedures

Ball-milling cellulose pre-treatment was performed in a Retsch PM400 planetary ball mill. Four 250 ml tungtsen carbide vials ³⁰ were each charged with 10 g of microcrystalline cellulose and 5 20 mm titanium carbide balls (16.2 g each). This loading represents a ball to substrate ratio of 8:1. The mill was rotated at 100 rpm for the desired duration, up to a maximum of 110 minutes. The only pauses in the method were for collection of ³⁵ samples after 20 and 50 minutes.

Conventional Heating Experimental Procedure

Conventional heating experiments were performed as follows. A 35 ml CEM microwave tubes was charged with 10 ml solvent (either DCE or cyclohexane), 5 ml conc. HCl and 500 mg

- ⁴⁰ fructose and a magnetic stirrer bar. The microwave tube was then placed within a pre-heated water bath (70 °C) for 12 minutes. 12 minutes was selected for the duration of the conventional heating methodology as the typical ramp time for comparative microwave experiments was 2 minutes followed by a 10 minute hold a 70 °C.
- ⁴⁵ After microwave heating the reaction mixture was passed into a separating funnel and the lower organic layer collected, filtered and the DCE removed *in vacou* yielding a light brown oil.

GC and GC-MS Analysis

- ⁵⁰ Isolated 5-chloromethyl furfural (CMF) sample purity and selectivity of the reaction were determined by GC-FID. 10 mg of sample was dissolved in 1 ml of dichloromethane, with tetradecane as a standard. Samples were ran on an Agilent Technologies 6890N Network GC System fitted with Phenomenx
- ⁵⁵ Zebron ZB5-HT Inferno column of the dimensions 30 m x 0.25 mm x 0.25 μm. GC-FID peak retention times were compared against standard of levulinic acid, 5-hydroxymethyl furfural (HMF) and CMF, and also by peak assignment from GC-MS. Sample purity an reaction selectivity were calculated based on the
- $_{60}$ ratio of peak areas of the present components. GC-MS samples were prepared as for GC-FID. GC-MS analysis was performed on a Perkin-Elmer 560 GC, using a Phenomenx Zebron ZB5-HT Inferno column of the dimensions 30 m x 0.25 mm x 0.25 μ m, with a Perkin-Elmer 600 EI-MS (positive ion mode) attached

65 NMR Analysis

¹H and proton-decoupled ¹³C NMR spectra were obtained on a Jeol 400 spectrometer, in CDCl₃. Chemical shifts were calibrated using the internal solvent resonance and referenced to TMS.

70 **References**

- 1 K. Sanda, L. Rigal, M. Delmas, A. Gaset, Synthesis, 1992, 34, 541.
- 75