# Synthesis of Substituted Amines and Isoindolinones: Catalytic Reductive Amination using Abundantly Available AlCl<sub>3</sub>/PMHS

Vishal Kumar, Sushila Sharma, Upendra Sharma, Bikram Singh and Neeraj Kumar\*

CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India E-mail: neerajnpp@rediffmail.com

# **Supporting information**

| Table of Contents                                                    | Page           |
|----------------------------------------------------------------------|----------------|
| General Experimental                                                 | S2             |
| Procedure for reductive amination of carbonyl compounds              | S2             |
| Procedure for the synthesis of N-substituted isoindolinones          | S2-S3          |
| Recyclability of the catalyst                                        | S3             |
| NMR data of isolated compounds                                       | S3-S8          |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of isolated compounds | <b>S9-S</b> 24 |
| Mechanistic study                                                    | S25-S30        |

### Experimental

#### General

AlCl<sub>3</sub> was purchased from Fisher Scientific India Pvt. Ltd. (Acros Organics). Silica gel (60-120 mesh) used for column chromatography was purchased from Sisco Research Laboratories Pvt. Ltd. India and all other chemicals were purchased from Spectrochem, India, Merck, Germany, and Sigma-Aldrich, USA and were used without further purification. NMR spectra were recorded on a Bruker Avance-300 and 600 spectrometers. Mass spectra were recorded on QTOF-Micro of Waters Micromass and Maxis-Bruker. The GC-MS analysis was carried out on a Shimadzu (QP 2010) series Gas Chromatogram-Mass Spectrometer (Tokyo, Japan), AOC-20i auto-sampler coupled, and a DB-5MS capillary column, (30 m x 0.25 mm i.d., 0.25µm). The initial temperature of column was 70 °C held for 4 min. and was programmed to 230 °C at 4°C/min., then held for 15 min. at 230 °C; the sample injection volume was 2 µl in GC grade dichloromethane. Helium was used as carrier gas at a flow rate of 1.1 ml min<sup>-1</sup> on split mode (1:50). UV-Vis spectra were recorded on UV-Vis 2450 spectrophotometer from Shimadzu.

*General experimental procedure for reductive amination of carbonyl compounds catalyzed by AlCl<sub>3</sub>/PMHS system*: To a stirred suspension of AlCl<sub>3</sub> (0.02 mmol) in ethanol (4 mL) were added carbonyl compound (1.0 mmol), amine (1.0 mmol) and PMHS (2.0 H equiv.) at room temperature and then the temperature was raised to 70 °C. On completion of the reaction (as monitored by TLC), reaction mixture was dried under vacuum and crude product was analyzed directly by GC-MS. For the purification of desired product column chromatography was carried out (*n*-hexane: ethyl acetate). General experimental procedure for synthesis of N-substituted isoindolinones catalyzed by AlCl<sub>3</sub>/PMHS system: To a stirred suspension of AlCl<sub>3</sub> (0.02 mmol) in ethanol (4 mL) were added 2-carboxybenzaldehyde (1.0 mmol), amine (1.0 mmol) and PMHS (2.0 H equiv.) at room temperature and then the temperature was raised to 70 °C. On completion of the reaction (as monitored by TLC), reaction mixture was dried under vacuum and product was purified by crystallization with absolute ethanol.

*Experimental procedure for recyclability of the catalyst*: The recyclability of the catalyst was evaluated by carrying out the reductive amination of benzaldehyde with aniline as test reaction. On completion of the reaction (as monitored by TLC), reaction mixture was dried under vacuum and the crude product was extracted with ethyl acetate (2 x 5mL). The residue left was dried under vacuum for 15 minutes. Successive reactions were carried out by sequential addition of fresh substrates, PMHS and ethanol to the crude remains after extracting the product.

### NMR data of isolated compounds

#### 1. *N*-Benzylaniline (Table 2, entry 1)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  4.06 (brs, 1H), 4.37 (s, 2H), 6.68 (d, 2H, *J* = 7.7 Hz), 6.76 (t, 1H, *J* = 7.3 Hz), 7.19-7.24 (m, 2H), 7.31-7.43 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  48.7, 113.2, 117.9, 127.6, 127.9, 129.0, 129.6, 139.8, 148.5.

### 2. *N*-(2'-Nitrobenzyl)aniline (Table 2, entry 2)

н  $NO_2$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  4.38 (brs, 1H), 4.75 (s, 2H), 6.59 (d, 2H, J = 7.7 Hz), 6.75 (t, 1H, J = 7.3 Hz), 7.15-7.21 (m, 2H), 7.41-7.47 (m, 1H), 7.56-7.61 (m, 1H), 7.70 (d, 1H, J = 7.6 Hz), 8.10 (d, 1H, J = 8.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  46.1, 113.3, 118.4, 125.5, 128.3, 129.7, 130.1, 134.0, 136.0, 147.7, 148.6.

3. 4-(*N*-Benzylamino)benzoic acid (Table 2, entry 10)



<sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  4.24 (s, 2H), 6.46 (d, 2H, *J* = 8.7 Hz), 7.07-7.21 (m, 5H), 7.63 (d, 2H, *J* = 8.7 Hz); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 75 MHz)  $\delta$  48.2, 112.9, 119.0, 128.4, 128.6, 129.9, 133.1, 141.1, 154.7, 171.3; HRESIMS calcd for C<sub>14</sub>H<sub>13</sub>NNaO<sub>2</sub> [M+Na]<sup>+</sup> 250.0844, found 250.0842.

4. 4-(*N*-Benzylamino)acetophenone (Table 2, entry 11)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  2.49 (s, 3H), 4.40 (s, 2H), 5.22 (brs, 1H), 6.62 (d, 2H, J = 8.5 Hz), 7.28-7.31 (m, 5H), 7.84 (d, 2H, J = 8.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  26.4, 47.8, 112.0, 127.1, 127.7, 127.9, 129.2, 131.2, 138.8, 152.6, 197.0.

5. *N*-Cinnamylaniline (Table 2, entry 13)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  3.90 (brs, 1H), 4.00 (d, 2H, J = 5.6 Hz), 6.36-6.45 (m, 1H), 6.67-6.76 (m, 3H), 6.82 (t, 1H, J = 7.3 Hz), 7.26-7.33 (m, 2H), 7.37-7.47 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  46.6, 113.5, 118.1, 126.8, 127.5, 128.0, 129.0, 129.7, 131.9, 137.3, 148.5; HRESIMS calcd for C<sub>15</sub>H<sub>16</sub>N [M+H]<sup>+</sup> 210.1283, found 210.1247.

6. *N*-Furfurylaniline (Table 2, entry 15)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  4.07 (brs, 1H), 4.37 (s, 2H), 6.29-6.39 (m, 2H), 6.72-6.75 (m, 2H), 6.78-6.83 (m, 1H), 7.23-7.28 (m, 2H), 7.43-7.46 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  41.8, 107.4, 110.7, 113.6, 118.4, 129.6, 142.3, 148.1, 153.2.

7. *N*-(2',3',4'-trimethoxybenzyl)aniline (Table 2, entry 16)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  3.89 (s, 1H), 3.97 (s, 3H), 4.00 (s, 3H), 4.34 (s, 2H), 6.66-6.80 (m, 4H), 7.06-7.08 (m, 1H), 7.22-7.27 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  43.6, 56.4, 61.2, 61.5, 107.6, 113.4, 117.8, 123.8, 125.6, 129.6, 142.7, 148.8, 152.3, 153.6. 8. 1-(4-Methoxyphenylamino)-1-(4-nitrophenyl)ethane (Table 3, entry 3)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.53-1.55 (m, 3H), 3.71 (s, 3H), 4.48-4.54 (m, 3H), 6.42 (d, 2H, J = 8.6 Hz), 6.71 (d, 2H, J = 8.6 Hz), 7.56 (d, 2H, J = 7.3 Hz), 8.20 (d, 2H, J = 7.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  25.3, 54.4, 56.1, 114.9, 115.2, 124.4, 127.1, 141.0, 147.4, 152.7, 153.8; HRESIMS calcd for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 295.1059, found 295.1053.

9. 1-(4-Bromophenylamino)-1-(4-nitrophenyl)ethane (Table 3, entry 4)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.49 (d, 3H, J = 6.7 Hz), 3.72 (s, 3H), 4.36-4.42 (m, 1H), 6.45-6.48 (m, 2H), 6.69-6.76 (m, 2H), 7.25-7.28 (m, 2H), 7.44-7.47 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  25.4, 54.2, 56.1, 115.0, 115.2, 120.8, 128.1, 132.1, 141.6, 145.0, 152.5.

**10.** *N*-Phenylisoindolone (Table 4, entry 1)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  4.76-4.88 (m, 2H), 7.17-7.22 (m, 1H), 7.42-7.50 (m, 3H), 7.52-7.55 (m, 1H), 7.59-7.61 (m, 1H), 7.78 (m, 1H), 7.88-7.96 (m, 2H); <sup>13</sup>C NMR

(CDCl<sub>3</sub>, 75 MHz)  $\delta$  51.1, 119.8, 123.0, 124.5, 124.8, 128.7, 129.5, 132.4, 133.6, 139.9, 140.5, 168.0; HRESIMS calcd for C<sub>14</sub>H<sub>11</sub>NNaO [M+Na]<sup>+</sup> 232.0738, found 232.0739.

#### 11. *N*-(4'-methoxyphenyl)isoindolinone (Table 4, entry 2)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  3.82 (s, 3H), 4.79 (s, 2H), 6.97 (d, 2H, J = 8.8 Hz), 7.48-7.60 (m, 3H), 7.75 (d, 2H, J = 8.8 Hz), 7.92 (d, 1H, J = 7.9 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  51.5, 55.8, 114.7, 121.8, 122.9, 124.3, 128.0, 128.8, 132.2, 133.6, 140.5, 157.0, 167.6.

### 12. *N*-(4'-methylphenyl)isoindolinone (Table 4, entry 3)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  2.36 (s, 3H), 4.82 (s, 2H), 7.24 (d, 2H, *J* = 8.0 Hz), 7.50-7.52 (m, 2H), 7.57-7.62 (m, 1H), 7.75 (d, 2H, *J* = 8.0 Hz), 7.93 (d, 1H, *J* = 7.6 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  21.2, 51.2, 119.9, 122.9, 124.4, 128.7, 130.0, 132.3, 133.7, 134.5, 137.3, 140.5, 167.7.

### 13. *N*-(4-Iodophenyl)isoindolinone (Table 4, entry 4)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  4.80 (s, 2H), 7.50-7.52 (m, 2H), 7.59-7.61 (m, 1H), 7.64-7.72 (m, 4H), 7.90 (d, 1H, *J* = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  50.8, 88.2, 121.3, 123.0, 124.5, 128.9, 132.7, 133.2, 138.4, 139.6, 140.2, 167.9. 14. *N*-(2,6-dimethylphenyl)isoindolinone (Table 4, entry 8)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 2.20 (s, 6H), 4.62 (s, 2H), 7.16-7.21 (m, 3H), 7.52-7.56 (m, 2H), 7.61-7.63 (m, 1H), 7.99 (d, 1H, J = 7.8 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz) δ 18.3, 51.6, 123.3, 124.7, 128.6, 128.91, 128.98, 132.1, 132.7, 134.8, 137.2, 142.1, 168.3.

#### **15.** *N*-Phenethylisoindolinone (Table 4, entry 9)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  3.01 (t, 2H, J = 7.3 Hz), 3.89 (t, 2H, J = 7.3 Hz), 4.22 (s, 2H), 7.21-7.33 (m, 5H), 7.39 (d, 1H, J = 7.2 Hz), 7.43-7.54 (m, 2H), 7.86 (d, 1H, J = 7.2 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  35.3, 44.5, 51.0, 123.0, 124.0, 126.9, 128.3, 129.0, 129.1, 131.5, 133.2, 139.2, 141.5, 168.8; HRESIMS calcd for C<sub>16</sub>H<sub>15</sub>NNaO [M+Na]<sup>+</sup> 260.1051, found 260.1042.

16. *N*-(4'-Methoxyphenethyl)isoindolinone (Table 4, entry 10)



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  2.92-2.97 (m, 2H), 3.78 (s, 3H), 3.81-3.86 (m, 2H), 4.20 (s, 2H), 6.83 (d, 2H, *J* = 8.3 Hz), 7.16 (d, 2H, *J* = 8.3 Hz), 7.38 (d, 1H, *J* = 7.3 Hz), 7.42-7.53 (m, 2H), 7.85 (d, 1H, *J* = 7.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  34.3, 44.6, 51.0, 55.6, 114.4, 123.0, 123.9, 128.3, 130.0, 131.2, 131.5, 133.2, 141.5, 158.6, 168.8; HRESIMS calcd for C<sub>17</sub>H<sub>17</sub>NNaO<sub>2</sub> [M+Na]<sup>+</sup> 290.1157, found 290.1162.

# <sup>1</sup>H and <sup>13</sup>C NMR spectra of isolated compounds

### *N*-Benzylaniline (Table 2, entry 1)



*N*-(2'-Nitrobenzyl)aniline (Table 2, entry 2)



4-(N-Benzylamino)benzoic acid (Table 2, entry 10)



## 4-(N-Benzylamino)acetophenone (Table 2, entry 11)



*N*-Cinnamylaniline (Table 2, entry 13)



 *N*-Furfurylaniline (Table 2, entry 15)







ı 220 ا 200 । 160 । 140 ' I 120 ' | 100 ا 80 і 60 I. I. Т 180 40 20 ppm

# 1-(4-Methoxyphenylamino)-1-(4-nitrophenyl)ethane (Table 3, entry 3)



## 1-(4-Bromophenylamino)-1-(4-nitrophenyl)ethane (Table 3, entry 4)



*N*-Phenylisoindolone (Table 2, entry 1)







220 200 180 160 140 120 100 80 60 40 20 ppm













## *N*-Phenethylisoindolinone (Table 3, entry 2)





*N*-(4'-Methoxyphenethyl)isoindolinone (Table 3, entry 4)

### Mechanistic investigation

### Study of imine activation by AlCl<sub>3</sub> using UV-Vis spectroscopy

#### UV-Vis spectrum of AlCl<sub>3</sub> in Ethanol





### UV-Vis spectra of imine, 4-(methoxybenzylidene)-4-methoxyaniline in Ethanol



### UV-Vis spectra of imine, 4-(methoxybenzylidene)-4-methoxyaniline + AlCl<sub>3</sub> in Ethanol

UV-Vis spectra of Et<sub>3</sub>N + AlCl<sub>3</sub> in Ethanol







# Study of PMHS activation by AlCl<sub>3</sub> using <sup>1</sup>HNMR

### **Experimental procedure**

To a stirred suspension of AlCl<sub>3</sub> (0.02 mmol) in ethanol (4 mL) was added PMHS (1.0 mmol) at room temperature and then the temperature was raised to 70  $^{\circ}$ C. The reaction was kept at 70  $^{\circ}$ C for 12 h. The solvent was evaporated under reduced pressure and resultant product was dissolved in CDCl<sub>3</sub> for NMR analysis.

### <sup>1</sup>HNMR spectrum of PMHS in CDCl<sub>3</sub>



<sup>1</sup>HNMR of PMHS + AlCl<sub>3</sub> in CDCl<sub>3</sub>

