Novel Three-Component Stereoselective Synthesis of Spirooxindole Derivatives

Fuchao Yu,^a Rong Huang,^a Hangchen Ni,^a Juan Fan,^a Shengjiao Yan*^a

and Jun Lin* ^{a,b}

 ^a Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
^b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China

Supporting Information

Table of Contents

General Inf	formation	4
General Pro	ocedure for the Preparation of Spirooxindole Derivatives 5 and 5'	4
Spectrosco	pic Data of Spirooxindole Derivatives 5 and 5'	5
X-ray Struc	ture and Data of 5r	23
X-ray Struc	cture and Data of 5r'	
Figure 1.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5a	
Figure 2.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5a	
Figure 3.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 b	
Figure 4.	13 C NMR (125 MHz, DMSO- d_6) spectra of compound 5b	40
Figure 5.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 c	41
Figure 6.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5 c	42
Figure 7.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5d	43
Figure 8.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5d	44
Figure 9.	¹ H NMR (500 MHz, DMSO- d_6 + HClO ₄) spectra of compound 5e	45
Figure 10.	¹³ C NMR (125 MHz, DMSO- d_6 + HClO ₄) spectra of compound 5e	46
Figure 11.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5f	47
Figure 12.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5f	48
Figure 13.	¹ H NMR (500 MHz, $CDCl_3 + DMSO-d_6$) spectra of compound 5g	49
Figure 14.	¹³ C NMR (125 MHz, $CDCl_3 + DMSO-d_6$) spectra of compound 5g	50
Figure 15.	¹ H NMR (500 MHz, CDCl ₃ + DMSO- d_6) spectra of compound 5h	51

Figure 16.	¹³ C NMR (125 MHz, $CDCl_3 + DMSO-d_6$) spectra of compound 5h	52
Figure 17.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 i	53
Figure 18.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5 i	54
Figure 19.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 j	55
Figure 20.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5 j	56
Figure 21.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 k	57
Figure 22.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5k	58
Figure 23.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 51	59
Figure 24.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 51	60
Figure 25.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5m	61
Figure 26.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5m	62
Figure 27.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5m'	63
Figure 28.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5m'	64
Figure 29.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5n	65
Figure 30.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5n	66
Figure 31.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5n'	67
Figure 32.	¹³ C NMR (125 MHz, DMSO- d_{δ}) spectra of compound 5n'	68
Figure 33.	¹ H NMR (500 MHz, DMSO- d_6 + HClO ₄) spectra of compound 50	69
Figure 34.	¹³ C NMR (125 MHz, DMSO- d_6 + HClO ₄) spectra of compound 50	70
Figure 35.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 50'	71
Figure 36.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 50'	72
Figure 37.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5p	73
Figure 38.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5p	74
Figure 39.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5p'	75
Figure 40.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5p'	76
Figure 41.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5q	77
Figure 42.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5q	78
Figure 43.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5q'	79
Figure 44.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5q'	80
Figure 45.	¹ H NMR (500 MHz, CDCl ₃ + DMSO- d_6) spectra of compound 5r	81
Figure 46.	¹³ C NMR (125 MHz, CDCl ₃ + DMSO- d_6) spectra of compound 5r	
Figure 47.	¹ H NMR (500 MHz, CDCl ₃ + DMSO- d_6) spectra of compound 5r'	
Figure 48.	¹³ C NMR (125 MHz, CDCl ₃ + DMSO- d_6) spectra of compound 5r'	
Figure 49.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5s	
Figure 50.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5 s	

Figure 51.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5s'	
Figure 52.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5s'	
Figure 53.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5t	
Figure 54.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5t	90
Figure 55.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5t'	
Figure 56.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5t'	
Figure 57.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5u	
Figure 58.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5u	94
Figure 59.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5u'	
Figure 60.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5u'	96
Figure 61.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5v	97
Figure 62.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5v	
Figure 63.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5v'	
Figure 64.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5v'	
Figure 65.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5w	101
Figure 66.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5w	
Figure 67.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5w'	
Figure 68.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5w'	
Figure 69.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 x	
Figure 71.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5x'	
Figure 72.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5x'	
References	and Notes	

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ and DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agllent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

Compounds 2 were prepared according to the literature¹. The materials 3a-c were purchased from Aldrich Corporation Limited.

General Procedure for the Preparation of Spirooxindole Derivatives 5 and 5'

HKAs 2 (1 mmol), indoline-2,3-dione 3 (1.1 mmol), ethyl trifluoroacetate 4 (1.1 mmol), ethanol (15 mL) and piperidine (4 drops) were charged into a 25 mL round-bottom flask, and the mixture was refluxed. The resulting solution was stirred for 2 h until the HKAs 2 were completely consumed. The mixture was cooled to room temperature, then EtOAc (50 mL \times 2) were added. The organic phase was washed with water (20 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford spirooxindole derivatives 5 and diastereoisomers 5' in a 80~93% yield.

Spectroscopic Data of Spirooxindole Derivatives 5 and 5'

(*3'S*,*5R*,*6S*)-Ethyl 8-(4-chlorobenzoyl)-5'-fluoro-5-hydroxy-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5a)

White solid; Mp 235–237 °C; IR (KBr): 3179, 3080, 1743, 1692, 1598, 1499, 1382, 1327, 1170, 1021, 816, 677 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_{δ}): $\delta = 0.62$ (t, J = 6.5 Hz, 3H, CH₃), 3.58–3.79 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.21–6.24 (m, 1H, ArH), 6.67–7.37 (m, 7H, ArH), 8.33 (br, 1H, NH), 9.55 (br, 1H, OH), 10.75 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_{δ}): $\delta = 13.4$, 42.4, 44.2, 51.0, 52.3, 60.8, 83.6–84.1 (q, J = 30.0 Hz), 85.9, 110.8 (d, J = 7.5 Hz), 112.4 (d, J = 25.0 Hz), 115.3 (d, J = 22.5 Hz), 122.8 (q, J = 286.3 Hz), 127.5, 127.7, 132.4, 134.1 (d, J = 8.8 Hz), 137.9, 140.8, 158.2, 160.1 (d, J = 7.5 Hz), 166.5, 182.7, 188.8; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₁ClF₄N₃O₅ [(M+H)⁺], 554.1100; found, 554.1097.

(3'S,5R,6S)-Ethyl 5'-chloro-8-(4-chlorobenzoyl)-5-hydroxy-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5b)

White solid; Mp 203–207 °C; IR (KBr): 3171, 3097, 1744, 1698, 1595, 1502, 1385, 1328, 1178, 1016, 810 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.62 (t, *J* = 7.0 Hz, 3H, CH₃), 3.57–3.82 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.27 (d, *J* = 8.3 Hz, 1H, ArH), 6.68–7.05 (m, 5H, ArH), 7.52 (d, *J* = 1.7 Hz, 1H, ArH), 8.18 (br, 1H, NH), 9.41 (br, 1H, OH), 10.83 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.9, 42.9, 44.7, 51.4, 52.6, 61.3, 84.2 (q, *J* = 30.0 Hz), 86.4, 111.9, 123.3 (q, *J* = 286.3 Hz), 125.3, 127.7, 127.8, 128.4, 129.2, 133.1, 134.8, 141.2, 141.3, 160.5, 170.0, 183.0, 189.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₅H₂₁Cl₂F₃N₃O₅ [(M+H)⁺], 570.0805; found, 570.0807.

(*3'S*,5*R*,6*S*)-Ethyl 8-(4-chlorobenzoyl)-5-hydroxy-2'-oxo-5-(trifluoro-methyl)-2, 3,5,6-tetra-hydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5c)

White solid; Mp 227–228.5 °C; IR (KBr): 3180, 3072, 1743, 1686, 1601, 1494, 1377, 1180, 1018, 751, 678 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.55-0.59$ (m, 3H, CH₃), 3.56–3.74 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.23 (d, J = 7.5 Hz, 1H, ArH), 6.34 (m, 1H, ArH), 6.63–6.69 (m, 2H, ArH), 6.91–6.97 (m, 5H, ArH), 7.29 (d, J = 7.4 Hz, 1H, ArH), 8.42 (br, 1H, NH), 9.63 (br, 1H, OH), 10.69 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.3$, 42.4, 44.2, 51.4, 51.8, 60.8, 83.6 (q, J = 30.0 Hz), 86.1, 110.0, 122.8, 124.3, 127.1, 127.3, 127.5, 127.9, 128.9, 131.3, 140.8, 141.7, 160.2, 166.4, 182.6, 189.2; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₂ClF₃N₃O₅ [(M+H)⁺], 536.1195; found, 536.1198.

(3'S,5R,6S)-Ethyl 8-benzoyl-5'-fluoro-5-hydroxy-2'-oxo-5-(trifluoromethyl)-2,3, 5,6-tetra-hydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5d)

White solid; Mp 183–186 °C; IR (KBr): 3184, 1741, 1688, 1600, 1494, 1378, 1172, 1023, 697 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.61$ (t, J = 5.6 Hz, 3H, CH₃), 3.56-3.76 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.16 (t, J = 4.1 Hz, 1H, ArH), 6.68–7.07 (m, 6H, ArH), 7.33 (d, J = 8.3 Hz, 1H, ArH), 8.37 (br, 1H, NH), 9.51 (br, 1H, OH), 10.71 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 42.3, 44.1, 51.2, 52.4, 60.8, 83.7 (q, J = 11.3 Hz), 85.9, 111.0, 112.2, 115.1, 122.9 (q, J = 287.5 Hz), 125.8, 127.3, 127.6, 134.1, 137.8, 142.2, 158.2, 160.0, 166.5, 182.7, 190.3; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₂F₄N₃O₅ [(M+H)⁺], 520.1490; found, 520.1488.

(3'S,5R,6S)-Ethyl 8-benzoyl-5'-chloro-5-hydroxy-2'-oxo-5-(trifluoromethyl)-2,3, 5,6-tetra-hydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate

White solid; Mp 228–229 °C; IR (KBr): 3329, 1693, 1600, 1515, 1475, 1379, 1332, 1181, 1015, 633 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6 + HClO₄): δ = 0.61 (t, *J* = 6.1 Hz, 3H, CH₃), 3.59–3.81 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.20 (d, *J* = 3.9 Hz, 1H, ArH), 6.69–7.07 (m, 6H, ArH), 7.50 (s, 1H, ArH), 8.25 (br, 1H, NH), 9.36 (br, 1H, OH), 10.79 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6 + HClO₄): δ = 13.4, 42.3, 44.1, 51.0, 52.2, 60.8, 83.6 (q, *J* = 18.8 Hz), 85.8, 111.4, 122.8 (q, *J* = 286.3 Hz), 124.6, 125.9, 127.0, 127.4, 127.7, 128.6, 134.3, 140.7, 142.2, 159.9, 166.5, 182.6, 190.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₅H₂₂ClF₃N₃O₅ [(M+H)⁺], 536.1195; found, 536.1194.

(3'S,5R,6S)-Ethyl 8-benzoyl-5-hydroxy-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5f)

White solid; Mp 220–224 °C; IR (KBr): 3195, 1741, 1678, 1605, 1482, 1177, 1023, 755, 696 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.56-0.58$ (m, 3H, CH₃), 3.40–3.78 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.17 (d, J = 5.0 Hz, 1H, ArH), 6.61–7.05 (m, 7H, ArH), 7.24–7.25 (m, 1H, ArH), 8.46 (br, 1H, NH), 9.51 (br, 1H, OH), 10.63 (m, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.3$, 42.3, 44.2, 51.7, 60.7, 83.7 (q, J = 17.5 Hz), 86.1, 110.1, 122.2 (q, J = 17.5 Hz), 121.7, 122.7, 124.1, 125.7, 127.1, 127.4, 128.8, 132.2, 141.7, 142.2, 160.0, 166.4, 182.6, 190.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₅H₂₃F₃N₃O₅ [(M+H)⁺], 502.1584; found, 502.1585.

(3'S,5R,6S)-Ethyl 5'-fluoro-5-hydroxy-8-(4-methylbenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5g)

White solid; Mp 224.5–227 °C; IR (KBr): 3218, 1746, 1687, 1606, 1507, 1022, 823 cm⁻¹; ¹H NMR (500 MHz, CDCl₃ + DMSO-*d*₆): $\delta = 0.68$ (t, J = 13.7 Hz, 3H, CH₃), 2.12 (s, 3H, ArCH₃), 3.17–3.80 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.08–6.10 (m, 1H, ArH), 6.52–6.82 (m, 6H, ArH), 8.31 (br, 1H, NH), 9.56 (br, 1H, OH), 10.36 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃ + DMSO-*d*₆): $\delta = 13.2$, 21.1, 42.0, 44.0, 51.5, 52.2, 60.8, 83.6 (q, J = 81.3 Hz), 86.1, 110.7–111.1 (m), 114.7 (d, J = 23.8 Hz), 122.5 (q, J = 286.3 Hz), 125.5, 127.6, 133.6, 137.1, 137.5, 138.8, 158.2, 160.2, 160.4, 166.1, 182.5, 191.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄F₄N₃O₅ [(M+H)⁺], 534.1647; found, 534.1647.

(3'S,5R,6S)-Ethyl 5'-chloro-5-hydroxy-8-(4-methylbenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5h)

White solid; Mp 223–226 °C; IR (KBr): 3224, 1744, 1689, 1603, 1484, 1377, 1177, 1025, 759 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.47$ (t, J = 6.8 Hz, 3H, CH₃), 1.92 (s, 3H, ArCH₃), 3.22 (s, 1H, CH), 3.36–3.65 (m, 6H, NCH₂CH₂N and OCH₂), 5.88 (d, J = 8.2 Hz, 1H, ArH), 6.41–6.80 (m, 6H, ArH), 7.97 (br, 1H, NH), 9.37 (br, 1H, OH), 10.13 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.5$, 21.3, 42.4, 44.3, 51.9, 52.2, 61.2, 83.8 (q, J = 31.3 Hz), 86.4, 111.5, 121.5–128.5 (m), 124.0, 125.9, 127.9, 128.5, 134.0, 137.5, 139.1, 140.4, 160.8, 166.5, 182.5, 192.0; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄ClF₃N₃O₅ [(M+H)⁺], 550.1351; found, 550.1350.

(3'S,5R,6S)-Ethyl 5-hydroxy-8-(4-methylbenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3, 5,6-tetra-hydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5i)

White solid; Mp 164–165.5 °C; IR (KBr): 3228, 1749, 1680, 1599, 1506, 1377, 1167, 1021, 605 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.58$ (t, J = 6.6 Hz, 3H, CH₃), 2.18 (s, 3H, ArCH₃), 3.56–3.72 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 6.25 (d, J = 7.6 Hz, 1H, ArH), 6.60 (d, J = 6.0 Hz, 2H, ArH), 6.59–6.94 (m, 4H, ArH), 7.23 (d, J = 7.4 Hz, 1H, ArH), 8.46 (br, 1H, NH), 9.06 (br, 1H, OH), 10.63 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 21.2, 42.3, 44.2, 51.5, 52.0, 60.7, 83.8 (q, J = 30.0 Hz), 86.3, 110.0, 121.8, 122.6, 124.0, 126.1, 127.8, 128.6, 132.3, 137.0, 139.4, 142.0, 159.6, 166.5, 182.7, 190.8; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₅F₃N₃O₅ [(M+H)⁺], 516.1741; found, 516.1742.

(3'S,5R,6S)-Ethyl 5'-fluoro-5-hydroxy-8-(4-methoxybenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5j)

White solid; Mp 225–228.5 °C; IR (KBr): 3223, 1738, 1693, 1597, 1530, 1257, 1169, 1024, 696, 609 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.64$ (t, J = 6.8 Hz, 3H, CH₃), 3.28–3.81 (m, 10H, NCH₂CH₂N, OCH₂, OCH₃ and CH), 6.34–6.36 (m, 1H, ArH), 6.63–7.00 (m, 5H, ArH), 7.29 (d, J = 8.3 Hz, 1H, ArH), 8.37 (br, 1H, NH), 8.48 (br, 1H, OH), 10.76 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 42.2, 44.2, 50.9, 52.7, 55.4, 60.8, 83.6–84.2 (m), 86.1, 110.7, 111.7 (d, J = 25.0 Hz), 113.1, 114.9 (d, J = 23.8 Hz), 122.9 (q, J = 287.5 Hz), 128.3, 134.6, 138.2, 158.1, 158.9, 159.6, 160.0, 166.6, 182.9, 190.0; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄F₄N₃O₆ [(M+H)⁺], 550.1596; found, 550.1595.

(3'S,5R,6S)-Ethyl 5'-chloro-5-hydroxy-8-(4-methoxybenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5k)

White solid; Mp 178–180 °C; IR (KBr): 3162, 1743, 1692, 1597, 1492, 1382, 1177, 1013, 660 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.65$ (t, J = 6.9 Hz, 3H, CH₃), 3.48–3.82 (m, 7H, NCH₂CH₂N, OCH₂ and CH), 3.70 (s, 3H, OCH₃), 6.40 (d, J = 8.2 Hz, 1H, ArH), 6.66 (d, J = 7.8 Hz, 2H, ArH), 6.88 (d, J = 7.8 Hz, 2H, ArH), 7.04 (d, J = 8.2 Hz, 1H, ArH), 7.46 (s, 1H, ArH), 8.23 (br, 1H, NH), 8.27 (br, 1H, OH), 10.86 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 42.3, 44.2, 50.9, 52.6, 55.5, 60.8, 83.8 (q, J = 30.0 Hz), 86.1, 111.3, 113.2, 121.8, 124.1, 126.9, 128.4, 128.5, 134.6, 134.6, 141.1, 159.0, 159.7, 166.6, 182.7, 189.8; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₄ClF₃N₃O₆[(M+H)⁺], 566.1300; found, 566.1300.

(3'S,5R,6S)-Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5l)

White solid; Mp 227–229.5 °C; IR (KBr): 3153, 1739, 1688, 1595, 1491, 1375, 1251, 1117, 1023, 757 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.59$ (t, J = 6.3 Hz, 3H, CH₃), 3.39–3.80 (m, 6H, NCH₂CHN, OCH₂ and CH), 3.73–3.76 (m, 3H, OCH₃), 6.34 (d, J = 7.6 Hz, 1H, ArH), 6.58 (d, J = 7.5 Hz, 2H, ArH), 6.76 (d, J = 7.5 Hz, 2H, ArH), 6.86–6.97 (m, 2H, ArH), 7.22 (d, J = 7.4 Hz, 2H, ArH), 8.44 (br, 1H, NH), 8.52 (br, 1H, OH), 10.67 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 42.2, 44.2, 51.5, 52.2, 55.5, 60.7, 83.9 (q, J = 30.0 Hz), 86.4, 110.0, 113.0, 121.8, 122.6, 123.7, 128.1, 128.7, 132.4, 134.7, 142.1, 159.1, 159.4, 166.5, 182.8, 190.3; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₅F₃N₃O₆ [(M+H)⁺], 532.1690; found, 532.1689.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 8-(4-chlorobenzoyl)-5'-fluoro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5m)

White solid; Mp 217–218 °C; IR (KBr): 3179, 1742, 1691, 1596, 1496, 1382, 1180, 1012, 667 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.58-0.62$ (m, 3H, CH₃), 1.32 (d, J = 4.9 Hz, 3H, CH₃), 3.24–3.29 (m, 1H, NCH₂), 3.59–4.06 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.18–6.20 (m, 1H, ArH), 6.13–7.00 (m, 5H, ArH), 7.36 (d, J = 7.7 Hz, 1H, ArH), 8.36 (br, 1H, NH), 9.84 (br, 1H, OH), 10.74 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 20.0, 50.6, 50.8, 51.0, 52.2, 60.8, 83.4–83.8 (q, J = 17.5 Hz), 85.6, 110.8, 112.5 (d, J = 26.3 Hz), 115.3 (d, J = 22.5 Hz), 122.8 (q, J = 286.3 Hz) 127.2, 127.5, 132.3, 134.0, 137.7 (d, J = 17.5 Hz), 140.8, 158.3, 159.6–160.1 (m), 166.4, 182.6 (d, J = 16.3 Hz), 189.1; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃ClF₄N₃O₅ [(M+H)⁺], 568.1257; found, 568.1257.

(2*R*,3'S,5*R*,6S)-Ethyl 8-(4-chlorobenzoyl)-5'-fluoro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5m')

White solid; Mp 221–224.5 °C; IR (KBr): 3324, 3264, 1738, 1691, 1598, 1503, 1381, 1336, 1278, 1179, 1018, 756, 678 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.85-0.90$ (m, 3H, CH₃), 1.41 (d, J = 6.1 Hz, 3H, CH₃), 3.19–3.21 (m, 1H, NCH₂), 3.69–4.09 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.22–6.24 (m, 1H, ArH), 6.68–6.89 (m, 5H, ArH), 7.34 (d, J = 7.5 Hz, 1H, ArH), 8.22–8.24 (m, 1H, NH), 9.61 (br, 1H, OH), 10.75 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 21.2, 49.7, 50.8, 52.2, 60.9, 79.4, 83.6 (q, J = 30.0 Hz), 85.5, 110.9, 112.4 (d, J = 23.8 Hz), 115.2 (d, J = 22.5 Hz), 122.8 (q, J = 287.5 Hz), 127.2, 127.8, 132.5, 134.0, 137.8 (d, J = 18.8 Hz) 140.7, 158.2, 159.1, 160.1, 166.4, 182.6, 188.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃ClF₄N₃O₅ [(M+H)⁺], 568.1257; found, 568.1257.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5'-chloro-8-(4-chlorobenzoyl)-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5n)

White solid; Mp 228–231 °C; IR (KBr): 3164, 1743, 1693, 1595, 1493, 1383, 1179, 1085, 1010, 663 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.60 (q, *J* = 6.9 Hz, 3H, CH₃), 1.31 (d, *J* = 5.6 Hz, 3H, CH₃), 3.27 (t, *J* = 9.9 Hz, 1H, NCH₂), 3.57–4.09 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.22 (d, *J* = 8.1 Hz, 1H, ArH), 6.61–6.65 (m, 2H, ArH), 6.99–7.02 (m, 3H, ArH), 7.54 (s, 1H, ArH), 8.23 (br, 1H, NH), 9.73 (br, 1H, OH), 10.83 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 20.0, 50.6, 50.7, 51.0, 52.1, 60.8, 83.5, 85.5, 111.4, 121.6, 123.9, 122.8, 124.9, 127.2, 127.7, 128.7, 132.4, 134.3, 140.5 (d, *J* = 20.0 Hz), 140.8, 159.7 (d, *J* = 18.8 Hz), 166.5, 182.4, 188.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃Cl₂F₃N₃O₅ [(M+H)⁺], 584.0961; found, 584.0964.

(2*R*,3'S,5*R*,6S)-Ethyl 5'-chloro-8-(4-chlorobenzoyl)-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5n')

White solid; Mp 176–179.5 °C; IR (KBr): 3353, 1735, 1686, 1601, 1507, 1336, 1181, 1014, 619 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.61$ (t, J = 6.9 Hz, 3H, CH₃), 1.24 (t, J = 6.1 Hz, 3H, CH₃), 3.18–3.20 (m, 1H, NCH₂), 3.57–4.06 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.26 (t, J = 8.1 Hz, 1H, ArH), 6.68–6.72 (m, 2H, ArH), 7.00–7.04 (m, 3H, ArH), 7.58 (s, 1H, ArH), 8.13 (br, 1H, NH), 9.49 (br, 1H, OH), 10.82 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 21.2, 49.6, 49.8, 50.8, 52.0, 60.8, 83.5, 85.5, 111.3, 122.8 (q, J = 286.3 Hz), 124.9, 127.1, 127.3, 128.0, 128.7, 132.6, 134.3, 140.6, 140.8, 158.8, 166.5, 182.4, 188.5; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₃Cl₂F₃N₃O₅ [(M+H)⁺], 584.0961; found, 584.0963.

(2S,3'S,5R,6S)-Ethyl8-(4-chlorobenzoyl)-5-hydroxy-2-methyl-2'-oxo-5-(tri-
fluoromethyl)-2,3,5,6-tetrahydro-1H-spiro[imidazo[1,2-a]pyridine-7,3'-indoline]-
6-carboxylate (50)

White solid; Mp 199–202 °C; IR (KBr): 3308, 1735, 1690, 1597, 1514, 1336, 1179, 1014, 756, 681 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6 + HClO₄): δ = 0.53–0.58 (m, 3H, CH₃), 1.32 (d, J = 5.9 Hz, 3H, CH₃), 3.24–3.29 (m, 1H, NCH₂), 3.38–4.11 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.19 (d, J = 7.6 Hz, 1H, ArH), 6.53–6.56 (m, 2H, ArH), 6.88–6.96 (m, 4H, ArH), 7.27 (d, J = 7.4 Hz, 1H, ArH), 8.45 (br, 1H, NH), 9.88 (br, 1H, OH), 10.68 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6 + HClO₄): δ = 13.3, 19.9, 50.4, 50.6, 51.0, 51.7, 60.8, 83.6 (q, J = 30.0 Hz), 85.8, 110.0, 121.7, 122.9, 124.4, 127.0, 127.4, 129.0, 132.0, 132.2, 140.8, 141.5, 159.8, 166.4, 182.6, 189.5; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₄ClF₃N₃O₅ [(M+H)⁺], 550.1351; found, 550.1349.

(2*R*,3'S,5*R*,6S)-Ethyl 8-(4-chlorobenzoyl)-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (50')

White solid; Mp 195–197 °C; IR (KBr): 3178, 1741, 1680, 1596, 1516, 1470, 1177, 1014, 753, 679 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.73$ (t, J = 6.9 Hz, 3H, CH₃), 1.32 (d, J = 6.0 Hz, 3H, CH₃), 3.54–4.26 (m, 6H, NCH₂CHN, OCH₂ and CH), 6.19 (d, J = 8.4 Hz, 1H, ArH), 6.77–6.82 (m, 2H, ArH), 7.15–7.21 (m, 4H, ArH), 7.18 (d, J = 7.4 Hz, 1H, ArH), 8.27 (br, 1H, NH), 9.68 (br, 1H, OH), 10.55 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.8$, 21.7, 50.1, 50.2, 51.3, 52.1, 61.3, 84.0, 86.3, 110.5, 122.1, 123.3, 124.9, 127.6, 127.6, 128.2, 129.4, 132.7, 141.4, 142.2, 159.6, 166.9, 183.1, 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₄ClF₃N₃O₅ [(M+H)⁺], 550.1351; found, 550.1349.

(2*S*,3'*S*,5*R*,6*S*)--Ethyl 8-benzoyl-5'-fluoro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5p)

White solid; Mp 226–229 °C; IR (KBr): 3168, 1743, 1691, 1594, 1492, 1329, 1179, 1015, 697 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.60$ (t, J = 6.5 Hz, 3H, CH₃), 1.30–1.33 (m, 3H, CH₃), 3.23–3.28 (m, 1H, NCH₂), 3.43–3.75 (m, 4H, NCH₂, OCH₂ and CH), 4.02–4.09 (m, 1H, NCH), 6.11–6.13 (m, 1H, ArH), 6.64–6.73 (m, 3H, ArH), 6.96–7.06 (m, 3H, ArH), 7.33 (d, J = 8.5 Hz, 1H, ArH), 8.42 (br, 1H, NH), 9.75 (br, 1H, OH), 10.70 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 19.9, 50.4, 50.5, 51.0, 52.3, 60.8, 83.7 (q, J = 12.5 Hz), 85.6, 110.9, 112.3 (d, J = 25.0 Hz), 115.2 (d, J = 23.8 Hz), 121.7, 125.6, 127.2, 127.4, 134.0, 137.7 (d, J = 18.8 Hz), 142.3, 158.2, 159.8, 166.5, 182.7, 190.6; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₄F₄N₃O₅ [(M+H)⁺], 534.1647; found, 534.1644.

(2*R*,3'S,5*R*,6S)--Ethyl 8-benzoyl-5'-fluoro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoro -methyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-car boxylate (5p')

White solid; Mp 225–228 °C; IR (KBr): 3223, 1742, 1687, 1599, 1494, 1279, 1174, 1020, 756, 699 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.59-0.64$ (m, 3H, CH₃), 1.25 (d, J = 4.8 Hz, 3H, CH₃), 3.17–3.21 (m, 1H, NCH₂), 3.58–4.08 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.17 (s, 1H, ArH), 6.70–6.75 (m, 3H, ArH), 6.98–7.07 (m, 3H, ArH), 7.34 (d, J = 7.5 Hz, 1H, ArH), 8.30 (br, 1H, NH), 9.53 (br, 1H, OH), 10.71 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4, 21.2, 49.7, 50.7, 51.1, 52.3, 60.8, 83.6 (q, <math>J = 28.8$ Hz), 85.5, 110.9, 112.2 (d, J = 25.0 Hz), 115.0 (q, J = 23.8 Hz), 125.9, 127.3, 127.6, 134.1, 137.8, 142.2, 158.2, 159.0, 160.1, 166.5, 182.7, 190.2; HRMS (TOF ES⁺): m/z calcd for C₂₆H₂₂F₄N₃O₅ [M-H⁺], 532.1501; found, 532.1510.

(2*S*,3'*S*,5*R*,6*S*)-ethyl 8-benzoyl-5'-chloro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5q)

White solid; Mp 206–209.5 °C; IR (KBr): 3169, 1744, 1692, 1598, 1491, 1381, 1180, 1017, 707 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.60 (t, *J* = 6.5 Hz, 3H, CH₃), 1.31 (d, *J* = 5.5 Hz, 3H, CH₃), 3.25 (t, *J* = 9.8 Hz, 1H, NCH₂), 3.57–3.79 (m, 3H, NCH₂, OCH₂), 4.03–4.07 (m, 1H, NCH), 6.15 (d, *J* = 8.1 Hz, 1H, ArH), 6.62–6.66 (m, 2H, ArH), 6.93–7.07 (m, 4H, ArH), 7.50 (s, 1H, ArH), 8.29 (br, 1H, NH), 9.65 (br, 1H, OH), 10.79 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 20.0, 50.4, 50.7, 50.9, 52.1, 60.8, 83.5, 85.5, 111.5, 121.7, 122.8 (q, *J* = 286.3 Hz), 124.7, 127.0, 127.3, 127.5, 128.6, 134.3, 140.5, 142.2, 159.7, 166.5, 182.6, 190.4; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄ClF₃N₃O₅ [(M+H)⁺], 550.1351; found, 550.1352

(2*R*,3'S,5*R*,6S)-ethyl 8-benzoyl-5'-chloro-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carb oxylate (5q')

White solid; Mp 206–210 °C; IR (KBr): 3226, 1742, 1688, 1599, 1526, 1334, 1179, 1018, 756, 700 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.60$ (t, J = 7.0 Hz, 3H, CH₃), 1.24 (d, J = 4.9 Hz, 3H, CH₃), 3.17–3.21 (m, 1H, NCH₂), 3.46–4.07 (m, 5H, NCH₂CHN, OCH₂ and CH), 6.17–6.20 (m, 1H, ArH), 6.67–6.72 (m, 2H, ArH), 6.94–7.08 (m, 4H, ArH), 7.54 (s, 1H, ArH), 8.30 (br, 1H, NH), 9.42 (br, 1H, OH), 10.78 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 21.2, 49.5, 50.8, 51.0, 52.1, 60.8, 83.5 (q, J = 11.3 Hz), 85.4, 111.4, 122.8 (q, J = 286.3 Hz), 124.7, 126.0, 127.0, 127.4, 127.7, 128.6, 134.4, 140.6, 142.2, 158.8, 166.5, 182.6, 190.0; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄ClF₃N₃O₅ [(M+H)⁺], 550.1351; found, 550.1350.

(2*S*,3'*S*,5*R*,6*S*)-ethyl 8-benzoyl-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5r)

White solid; Mp 209–211.5 °C; IR (KBr): 3223, 1749, 1673, 1602, 1524, 1334, 1181, 1064, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃ + DMSO-*d*₆): δ = 0.68 (t, *J* = 6.3 Hz, 3H, CH₃), 1.43 (d, *J* = 6.0 Hz, 3H, CH₃), 3.43–3.47 (m, 1H, NCH₂), 3.52 (s, 1H, CH), 3.59–3.81 (m, 3H, NCH₂ and OCH₂), 4.18–4.23 (m, 1H, NCH), 6.11 (d, *J* = 7.6 Hz, 1H, ArH), 6.83–6.97 (m, 7H, ArH), 7.07 (d, *J* = 7.3 Hz, 1H, ArH), 8.46 (br, 1H, NH), 9.98 (br, 1H, NH), 10.16 (br, 1H, OH); ¹³C NMR (125 MHz, CDCl₃ + DMSO-*d*₆): δ = 13.5, 20.2, 50.7, 51.5, 52.0, 52.0, 61.2, 83.0 (q, *J* = 30.0 Hz), 86.4, 110.7, 121.7, 122.9, 123.8, 125.6, 127.2, 127.3, 129.0, 132.1, 141.5, 142.0, 160.8, 166.7, 182.8, 192.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₅F₃N₃O₅ [(M+H)⁺], 516.1741; found, 516.1740.

(2*R*,3'S,5*R*,6S)-ethyl 8-benzoyl-5-hydroxy-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5r')

White solid; Mp 169–171 °C; IR (KBr): 3183, 1743, 1681, 1600, 1519, 1333, 1281, 1177, 1017, 754, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃ + DMSO-*d*₆): δ = 0.60 (t, *J* = 6.3 Hz, 3H, CH₃), 1.27 (d, *J* = 6.2 Hz, 3H, CH₃), 3.19–3.22 (m, 1H, NCH₂), 3.32 (s, 1H, CH), 3.47–3.93 (m, 3H, NCH₂, OCH₂), 4.08–4.12 (m, 1H, NCH), 6.13–6.16 (m, 1H, ArH), 6.59–6.63 (m, 2H, ArH), 6.81–7.01 (m, 5H, ArH), 7.17–7.19 (m, 1H, ArH), 8.38 (br, 1H, NH), 9.65 (br, 1H, OH), 10.56 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃ + DMSO-*d*₆): δ = 13.8, 21.8, 50.1, 51.2, 52.1, 52.2, 61.2, 84.2 (q, *J* = 28.8 Hz), 86.2, 110.7, 122.1, 123.0, 124.4, 126.2, 127.5, 127.7, 129.1, 132.6, 142.2, 142.6, 159.6, 166.8, 183.1, 191.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₅F₃N₃O₅[(M+H)⁺], 516.1741; found, 516.1740.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5'-fluoro-5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5 -(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5s)

White solid; Mp 218.1–222.7 °C; IR (KBr): 3180, 1744, 1691, 1597, 1495, 1381, 1 1179, 1014, 706 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.60–0.63 (m, 3H, CH₃), 1.28–1.32 (m, Hz, 3H, CH₃), 2.18 (s, 3H, ArCH₃), 3.24 (t, *J* = 9.7 Hz, 1H, NCH₂), 3.57–3.61 (m, 1H, NCH₂), 3.72–3.76 (m, 3H, OCH₂ and CH), 4.00–4.04 (m, 1H, NCH), 6.19 (t, *J* = 6.2 Hz, 1H, ArH), 6.58–6.62 (m, 2H, ArH), 6.73–6.80 (m, 3H, ArH), 7.29 (d, *J* = 7.7 Hz, 1H, ArH), 8.42 (br, 1H, NH), 9.43 (br, 1H, OH), 10.72 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 19.9, 21.2, 50.3, 50.9, 51.0, 52.5, 60.8, 83.7 (q, *J* = 28.8 Hz), 85.8, 110.8, 112.1 (d, *J* = 26.3 Hz), 115.0 (d, *J* = 23.8 Hz), 122.8 (d, *J* = 286.3 Hz), 125.8, 127.8, 134.1, 137.0, 137.9, 139.4, 158.2, 159.5, 160.1, 166.5; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₆F₄N₃O₅ [(M+H)⁺], 548.1803; found, 548.1812.

(2*R*,3'S,5*R*,6S)-Ethyl 5'-fluoro-5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5 -(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5s')

White solid; Mp 217–219 °C; IR (KBr): 3332, 3240, 1739, 1689, 1599, 1500, 1335, 1278, 1177, 1023, 756 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.60–0.64 (m, 3H, CH₃), 1.22 (d, *J* = 4.7 Hz, 3H, CH₃), 2.10 (s, 3H, ArCH₃), 3.16–3.19 (m, 1H, NCH₂), 3.57–3.62 (m, 1H, NCH₂), 3.71–3.87 (m, 3H, OCH₂ and CH), 4.00–4.04 (m, 1H, NCH), 6.22–6.25 (m, 1H, ArH), 6.67–6.82 (m, 5H, ArH), 7.30 (d, *J* = 7.1 Hz, 1H, ArH), 8.29 (br, 1H, NH), 9.11 (br, 1H, OH), 10.71 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 21.2, 21.2, 49.6, 50.7, 50.8, 52.4, 60.8, 83.7 (q, *J* = 30.0 Hz), 85.6, 110.7, 112.0 (q, *J* = 25.0 Hz), 114.9 (q, *J* = 23.8 Hz), 122.8 (q, *J* = 286.3 Hz),

126.2, 127.8, 134.2, 137.4, 138.1, 139.3, 158.2, 158.6, 160.0, 166.5, 182.8, 190.3; HRMS (TOF ES⁺): m/z calcd for $C_{27}H_{26}F_4N_3O_5$ [(M+H)⁺], 548.1803; found, 548.1813.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5'-chloro-5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5 -(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5t)

White solid; Mp 213–216.5 °C; IR (KBr): 3162, 1743, 1692, 1597, 1493, 1382, 1327, 1177, 1014, 705 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.61$ (t, J = 6.6 Hz, 3H, CH₃), 1.28 (d, J = 3.6 Hz, 3H, CH₃), 2.17 (s, 3H, ArCH₃), 3.24 (t, J = 9.7 Hz, 1H, CH₂), 3.57–3.63 (m, 1H, NCH₂), 3.72–3.76 (m, 2H, OCH₂), 3.78 (s, 1H, CH), 3.99–4.03 (m, 1H, NCH), 6.20–6.23 (m, 1H, ArH), 6.58–6.62 (m, 2H, ArH), 6.78–6.82 (m, 2H, ArH), 6.96 (d, J = 8.1 Hz, 1H, ArH), 7.46 (s, 1H, ArH), 8.28 (br, 1H, NH), 9.30 (br, 1H, OH), 10.79 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 20.0, 21.2, 50.4, 50.8, 51.0, 52.3, 60.8, 83.6 (q, J = 20.0 Hz), 85.7, 111.3, 124.5, 126.0, 126.9, 122.8 (q, J = 287.5 Hz), 128.4, 128.9, 134.4, 137.1, 139.4, 140.6, 159.4, 166.5, 182.5, 190.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₆ClF₃N₃O₅ [(M+H)⁺], 564.1508; found, 564.1514.

(2*R*,3'S,5*R*,6S)-Ethyl 5'-chloro-5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5 -(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoli ne]-6-carboxylate (5t')

White solid; Mp 182–185 °C; IR (KBr): 3162, 1743, 1692, 1597, 1493, 1382, 1327, 1177, 1014, 705 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.61$ (t, J = 5.3 Hz, 3H, CH₃), 1.28–1.30 (m, 3H, CH₃), 2.18 (s, 3H, CH₃), 3.21–3.25 (m, 1H, NCH₂), 3.59–3.63 (m, 1H, NCH₂), 3.72–3.78 (m, 2H, OCH₂), 3.78 (s, 1H, CH), 4.00–4.04 (m, 1H, NCH), 6.20–6.23 (m, 1H, ArH), 6.58–6.80 (m, 4H, ArH), 6.97 (d, J = 8.2 Hz, 1H,

ArH), 7.47(s, 1H, ArH), 8.28 (br, 1H, NH), 9.27 (br, 1H, OH), 10.79 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 20.0, 21.2, 50.4, 50.8, 51.0, 52.3, 60.8, 83.6 (q, J = 30.0 Hz), 85.7, 111.3, 122.8 (q, J = 286.3 Hz), 124.6, 126.0, 126.9, 127.8, 128.4, 134.4, 137.1, 139.4, 140.7, 159.4, 166.6, 182.6, 190.6; HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₆ClF₃N₃O₅ [(M+H)⁺], 564.1508; found, 564.1503.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5-(tri-fluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5u)

White solid; Mp 213–216.5 °C; IR (KBr): 3312, 3187, 1734, 1690, 1600, 1337, 1178, 1017, 759 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.54-0.58$ (m, 3H, CH₃), 1.27–1.31 (m, 3H, CH₃), 2.08 (s, 3H, CH₃), 3.22 (d, *J* = 9.9 Hz, 1H, CH₂), 3.54–3.63 (m, 1H, NCH₂), 3.72–3.75 (m, 2H, OCH₂), 3.78 (s, 1H, CH), 4.00–4.04 (m, 1H, NCH), 6.18–6.22 (m, 1H, ArH), 6.51–6.55 (m, 2H, ArH), 6.72–6.75 (m, 2H, ArH), 6.85–6.93 (m, 2H, ArH), 7.22 (d, *J* = 8.1 Hz, 1H, ArH), 8.50 (br, 1H, NH), 9.41 (br, 1H, OH), 10.61 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 20.0, 21.2, 50.2, 50.4, 51.4, 51.9, 60.8, 83.7 (q, *J* = 30.0 Hz), 86.0, 111.0, 121.7, 122.6, 124.0, 125.8, 127.6, 128.7, 128.8, 132.3, 139.5, 141.8, 159.4, 166.5, 182.6, 191.1; HRMS (TOF ES⁺): *m/z* calcd for $C_{27}H_{27}F_3N_3O_5$ [(M+H)⁺], 530.1897; found,530.1889.

(2*R*,3'S,5*R*,6S)-Ethyl 5-hydroxy-2-methyl-8-(4-methylbenzoyl)-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5u')

White solid; Mp 182–185 °C; IR (KBr): 3203, 1744, 1684, 1600, 1504, 1174, 1018, 755 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.66$ (t, J = 7.1 Hz, 3H, CH₃), 1.28 (t, J = 4.1 Hz, 3H, CH₃), 2.14 (s, 3H, CH₃), 3.15–3.24 (m, 1H, NCH₂), 3.49–3.83 (m, 4H, NCH₂, OCH₂ and CH), 4.01–4.05 (m, 1H, NCH), 6.14–6.20 (m, 1H, ArH), 6.50–6.55

(m, 2H, ArH), 6.80–6.94 (m, 4H, ArH), 7.16 (d, J = 7.4 Hz, 1H, ArH), 8.38 (br, 1H, NH), 9.14 (br, 1H, OH), 10.62 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.8, 21.7, 49.9, 50.0, 51.2, 51.9, 52.4, 61.2, 84.2$ (q, J = 28.8 Hz), 86.3, 110.5, 122.2, 123.0, 124.5, 126.7, 128.2, 129.1, 132.8, 137.6, 139.9, 142.3, 159.0, 167.0, 183.2, 191.1; HRMS (TOF ES⁺): m/z calcd for $C_{27}H_{27}F_3N_3O_5$ [(M+H)⁺], 530.1897; found, 530.1889.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5'-fluoro-5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'-oxo -5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-ind oline]-6-carboxylate (5v)

White solid; Mp 215–217 °C; IR (KBr): 3189, 1743, 1688, 1595, 1494, 1380, 1247, 1176, 1023, 710 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.63$ (t, J = 6.7 Hz, 3H, CH₃), 1.20 (t, J = 3.7 Hz, 3H, CH₃), 3.22 (t, J = 9.7 Hz, 1H, NCH₂), 3.53–3.82 (m, 4H, NCH₂, OCH₂ and CH), 3.69 (s, 3H, OCH₃), 3.96–3.99 (m, 1H, NCH), 6.29 (t, J = 4.0 Hz, 1H, ArH), 6.59 (d, J = 4.9 Hz, 2H, ArH), 6.75–6.79 (m, 3H, ArH), 7.29 (d, J = 8.2 Hz, 1H, ArH), 8.40 (br, 1H, NH), 8.95 (br, 1H, OH), 10.73 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 19.9, 50.2, 50.4, 51.0, 52.6, 55.5, 60.8, 83.8, 85.8, 110.8, 111.8 (d, J = 25.0 Hz), 113.0, 115.0 (d, J = 23.8 Hz), 122.8, 127.8, 134.3, 134.7, 138.0 (d, J = 18.8 Hz), 158.9 (d, J = 22.5 Hz), 159.3, 160.1, 166.5, 182.7, 190.4; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₆F₄N₃O₆ [(M+H)⁺], 564.1752; found, 564.1753.

(2*R*,3'S,5*R*,6S)-Ethyl 5'-fluoro-5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-i ndoline]-6-carboxylate (5v')

White solid; Mp 209–213 °C; IR (KBr): 3248, 1741, 1690, 1600, 1495, 1287, 1174, 1022, 819, 694 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.60-0.64$ (m, 3H, CH₃),

1.17 (d, J = 5.8 Hz, 3H, CH₃), 3.15–3.19 (m, 1H, NCH₂), 3.60–3.88 (m, 5H, NCH₂CHN, OCH₂ and CH), 3.67 (s, 3H, OCH₃), 6.32–6.37 (m, 1H, ArH), 6.75–6.80 (m, 3H, ArH), 7.22 (d, J = 6.5 Hz, 1H, ArH), 8.28 (br, 1H, NH), 10.80 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.3$, 21.0, 49.5, 50.7, 51.0, 52.6, 55.4, 60.9, 83.6 (q, J = 30.0 Hz), 85.7, 111.6 (q, J = 25.0 Hz), 112.8, 113.0, 114.9 (q, J = 23.8 Hz), 122.8 (q, J = 286.3 Hz), 123.9, 134.2 (q, J = 8.8 Hz), 134.4, 138.1, 158.2 (q, J = 22.5 Hz), 159.6, 160.0, 166.6, 182.9, 190.0; HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₆F₄N₃O₆ [(M+H)⁺], 564.1752; found, 564.1740.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5'-chloro-5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-i ndoline]-6-carboxylate (5w)

White solid; Mp 205–209 °C; IR (KBr): 3162, 1743, 1692, 1597, 1492, 1382, 1283, 1172, 1013, 660 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.63$ (t, J = 6.7 Hz, 3H, CH₃), 1.26 (d, J = 5.8 Hz, 3H, CH₃), 3.22 (t, J = 9.6 Hz, 2H, NCH₂), 3.60–3.83 (m, 4H, NCH₂, OCH₂ and CH), 3.70 (s, 3H, OCH₃), 3.97–4.02 (m, 1H, NCH), 6.32 (d, J = 8.2 Hz, 1H, ArH), 6.58–6.61 (m, 2H, ArH), 6.74–6.78 (m, 2H, ArH), 6.98–7.00 (m, 1H, ArH), 7.46 (s, 1H, ArH), 8.27 (br, 1H, NH), 8.77 (br, 1H, OH), 10.83 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 20.0, 50.4, 50.8, 51.0, 52.5, 55.5, 60.8, 83.7 (q, J = 28.8 Hz), 85.8, 111.3, 113.1, 124.3, 126.9, 128.0, 128.5, 134.5, 134.7, 140.9, 159.0, 159.4, 166.6, 182.7, 190.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₆ClF₃N₃O₆ [(M+H)⁺], 580.1457; found, 580.1483.

(2*R*,3'S,5*R*,6S)-Ethyl 5'-chloro-5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-i ndoline]-6-carboxylate (5w')

White solid; Mp 214-216 °C; IR (KBr): 3162, 1743, 1692, 1597, 1491, 1382, 1326,

1177, 1013, 660 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 0.65$ (t, J = 6.7 Hz, 3H, CH₃), 1.20 (t, J = 5.8 Hz, 3H, CH₃), 3.14–3.17 (m, 1H, NCH₂), 3.60–3.84 (m, 4H, NCH₂, OCH₂ and CH), 3.71 (s, 3H, OCH₃), 3.94–3.98 (m, 1H, NCH), 6.39 (d, J = 8.2 Hz, 1H, ArH), 6.63–6.66 (m, 2H, ArH), 6.87–6.90 (m, 2H, ArH), 7.01 (d, J = 8.2 Hz, 1H, ArH), 7.49 (s, 1H, ArH), 8.18 (br, 1H, NH), 8.38 (br, 1H, OH), 10.84 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.4$, 21.1, 49.5, 50.8, 50.9, 52.5, 55.5, 60.7, 83.7 (q, J = 31.3 Hz), 85.6, 111.3, 113.1, 124.0, 124.2, 126.9, 128.4, 128.5, 134.5, 134.6, 141.1, 158.0, 159.8, 166.6, 182.7, 189.6; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₆ClF₃N₃O₆ [(M+H)⁺], 580.1457; found, 580.1457.

(2*S*,3'*S*,5*R*,6*S*)-Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'-oxo-5-(tri -fluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline] -6-carboxylate (5x)

White solid; Mp 200–203 °C; IR (KBr): 3252, 3183, 1742, 1681, 1601, 1517, 1287, 1174, 1024, 752 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.57–0.61 (m, 3H, CH₃), 1.20 (d, J = 5.9 Hz 3H, CH₃), 3.16–3.19 (m, 1H, NCH₂), 3.55–3.67 (m, 2H, NCH₂ and CH), 3.68 (s, 3H, OCH₃), 3.80–3.85 (m, 2H, OCH₂), 3.97–4.01 (m, 1H, NCH), 6.22–6.26 (m, 1H, ArH), 6.33–6.37 (m, 3H, ArH), 6.75–6.78 (m, 2H, ArH), 6.86–6.90 (m, 1H, ArH), 6.94–6.96 (m, 1H, ArH), 7.22 (d, *J* = 7.2 Hz, 1H, ArH), 8.29 (br, 1H, NH), 8.63 (br, 1H, OH), 10.71 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 21.2, 49.4, 50.7, 51.4, 52.1, 55.4, 60.7, 83.8 (q, *J* = 30.0 Hz), 85.9, 110.0, 112.9, 122.6, 123.7, 128.1, 128.3, 128.6, 132.3, 134.6, 142.0, 158.2, 159.4, 166.5, 182.8, 190.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₇F₃N₃O₆ [(M+H)⁺], 546.1846; found, 546.1855.

(2*R*,3'S,5*R*,6S)-Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-2-methyl-2'-oxo-5-(trifluoromethyl)-2,3,5,6-tetrahydro-1*H*-spiro[imidazo[1,2-*a*]pyridine-7,3'-indoline]-6-carboxylate (5x')

White solid; Mp 205–207 °C; IR (KBr): 3206, 1738, 1685, 1596, 1498, 1248, 1174, 1025, 714 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 0.58-0.65$ (m, 3H, CH₃), 1.28 (d, J = 5.8 Hz, 3H, CH₃), 3.17–3.24 (m, 1H, NCH₂), 3.58–3.81 (m, 4H, NCH₂, OCH₂ and CH), 3.68 (s, 3H, OCH₃), 3.99–4.04 (m, 1H, NCH), 6.28 (d, J = 7.5 Hz, 1H, ArH), 6.51–6.55 (m, 3H, ArH), 6.64–6.68 (m, 2H, ArH), 6.86–6.90 (m, 1H, ArH), 6.92–6.96 (m, 1H, ArH), 7.22 (d, J = 7.2 Hz, 1H, ArH), 8.50 (br, 1H, NH), 8.98 (br, 1H, OH), 10.67 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 19.9, 50.3, 51.1, 51.3, 52.1, 55.4, 60.7, 83.8, 86.1, 110.1, 112.9, 122.7, 122.8, 123.8, 127.7, 128.7, 132.3, 134.8, 141.9, 159.1, 159.1, 166.5, 182.8, 190.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₇F₃N₃O₆ [(M+H)⁺], 546.1846; found, 546.1856.

X-ray Structure and Data² of 5r

Figure S1 X-Ray crystal structure of 5r

Tuble DI Cijbiul duid	
Empirical formula	$C_{26} H_{24} F_3 N_3 O_5$
Formula weight	515.48
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	a = 8.941(2) A alpha = 90 deg.
	b = 22.201(4) A beta $= 111.357(10) deg$
	c = 12.975(2) A gamma = 90 deg.
Volume	2398.6(8) A^3
Z, Calculated density	4, 1.427 Mg/m^3
Absorption coefficient	0.115 mm^-1
F(000)	1072
Crystal size	0.23x 0.19 x 0.14 mm
Theta range for data collection	1.83 to 28.26 deg.
Limiting indices	-11<=h<=11, -20<=k<=28, -17<=l<=17
Reflection collected/unique	16431/5607[R(int) = 0.0607]
Completeness to theta $= 28.2$	94.6%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	5607/ 0/ 358
Goodness-of-fit on F^2	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0702, wR2 = 0.1663
R indices (all data)	R1 = 0.1847, wR2 = 0.2182
Extinction	coefficient
Largest diff. peak and hole	0.339 and -0.353 e.A^-3

Table S1	Crystal data	and structure	refinement fo	r 100903A
	CI J Dial aaia	and builderale	rementer re	1 100/05/1

Table S2Bond lengths	[A] and angles [deg] for 100903A	
C(1)-O(1)	1.252(4)	_
C(1)-C(8)	1.433(4)	
C(1)-C(2)	1.501(4)	
C(2)-C(7)	1.383(5)	
C(2)-C(3)	1.394(5)	
C(3)-C(4)	1.376(5)	
C(3)-H(3)	0.9300	
C(4)-C(5)	1.367(6)	
C(4)-H(4)	0.9300	

C(5)-C(6)	1.368(6)
C(5)-H(5)	0.9300
C(6)-C(7)	1.396(5)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.392(4)
C(8)-C(19)	1.524(4)
C(9)-N(1)	1.326(4)
C(9)-N(2)	1.380(4)
C(10)-N(1)	1.461(4)
C(10)-C(11)	1.482(5)
C(10)-C(12)	1.524(5)
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-N(2)	1.470(4)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-O(2)	1.401(4)
C(13)-N(2)	1.459(4)
C(13)-C(15)	1.525(5)
C(13)-C(14)	1.527(5)
C(14)-F(3)	1.322(5)
C(14)-F(2)	1.330(4)
C(14)-F(1)	1.338(5)
C(15)-C(16)	1.517(5)
C(15)-C(19)	1.557(5)
C(15)-H(15)	0.9800
C(16)-O(3)	1.189(5)
C(16)-O(4)	1.318(6)
C(17)-C(18)	1.32(3)
C(17)-O(4)	1.542(16)
C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-C(26)	1.509(5)
C(19)-C(20)	1.561(4)

C(20)-O(5)	1.223(4)
C(20)-N(3)	1.352(4)
C(21)-C(22)	1.378(5)
C(21)-C(26)	1.391(4)
C(21)-N(3)	1.405(4)
C(22)-C(23)	1.386(6)
C(22)-H(22)	0.9300
C(23)-C(24)	1.357(6)
C(23)-H(23)	0.9300
C(24)-C(25)	1.398(6)
C(24)-H(24)	0.9300
C(25)-C(26)	1.375(4)
C(25)-H(25)	0.9300
C(17')-C(18')	1.40(3)
C(17')-O(4)	1.696(14)
C(17')-H(17C)	0.9700
C(17')-H(17D)	0.9700
C(18')-H(18D)	0.9600
C(18')-H(18E)	0.9600
C(18')-H(18F)	0.9600
N(1)-H(1)	0.8600
N(3)-H(3A)	0.8600
O(2)-H(2)	0.8200
O(1)-C(1)-C(8)	123.1(3)
O(1)-C(1)-C(2)	115.3(3)
C(8)-C(1)-C(2)	121.6(3)
C(7)-C(2)-C(3)	119.0(4)
C(7)-C(2)-C(1)	120.1(3)
C(3)-C(2)-C(1)	120.7(3)
C(4)-C(3)-C(2)	120.3(4)
C(4)-C(3)-H(3)	119.9
C(2)-C(3)-H(3)	119.9
C(5)-C(4)-C(3)	120.3(5)
C(5)-C(4)-H(4)	119.8
C(3)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	120.6(5)
C(4)-C(5)-H(5)	119.7
C(6)-C(5)-H(5)	119.7
C(5)-C(6)-C(7)	119.8(4)
C(5)-C(6)-H(6)	120.1

C(7)-C(6)-H(6)	120.1	
C(2)-C(7)-C(6)	120.0(4)	
C(2)-C(7)-H(7)	120.0	
C(6)-C(7)-H(7)	120.0	
C(9)-C(8)-C(1)	118.1(3)	
C(9)-C(8)-C(19)	118.4(3)	
C(1)-C(8)-C(19)	122.8(3)	
N(1)-C(9)-N(2)	108.4(3)	
N(1)-C(9)-C(8)	126.8(3)	
N(2)-C(9)-C(8)	124.8(3)	
N(1)-C(10)-C(11)	113.7(3)	
N(1)-C(10)-C(12)	100.6(3)	
C(11)-C(10)-C(12)	114.5(3)	
N(1)-C(10)-H(10)	109.2	
C(11)-C(10)-H(10)	109.2	
C(12)-C(10)-H(10)	109.2	
C(10)-C(11)-H(11A)	109.5	
C(10)-C(11)-H(11B)	109.5	
H(11A)-C(11)-H(11B)	109.5	
C(10)-C(11)-H(11C)	109.5	
H(11A)-C(11)-H(11C)	109.5	
H(11B)-C(11)-H(11C)	109.5	
N(2)-C(12)-C(10)	103.2(3)	
N(2)-C(12)-H(12A)	111.1	
C(10)-C(12)-H(12A)	111.1	
N(2)-C(12)-H(12B)	111.1	
C(10)-C(12)-H(12B)	111.1	
H(12A)-C(12)-H(12B)	109.1	
O(2)-C(13)-N(2)	112.9(3)	
O(2)-C(13)-C(15)	114.9(3)	
N(2)-C(13)-C(15)	106.5(3)	
O(2)-C(13)-C(14)	103.3(3)	
N(2)-C(13)-C(14)	108.5(3)	
C(15)-C(13)-C(14)	110.6(3)	
F(3)-C(14)-F(2)	105.8(4)	
F(3)-C(14)-F(1)	107.3(4)	
F(2)-C(14)-F(1)	106.4(4)	
F(3)-C(14)-C(13)	114.3(4)	
F(2)-C(14)-C(13)	111.5(4)	
F(1)-C(14)-C(13)	111.1(4)	

C(16)-C(15)-C(13)	112.8(4)	
C(16)-C(15)-C(19)	110.1(3)	
C(13)-C(15)-C(19)	114.7(3)	
C(16)-C(15)-H(15)	106.2	
C(13)-C(15)-H(15)	106.2	
C(19)-C(15)-H(15)	106.2	
O(3)-C(16)-O(4)	124.6(4)	
O(3)-C(16)-C(15)	124.2(5)	
O(4)-C(16)-C(15)	110.9(4)	
C(18)-C(17)-O(4)	109(2)	
C(18)-C(17)-H(17A)	109.8	
O(4)-C(17)-H(17A)	109.8	
C(18)-C(17)-H(17B)	109.8	
O(4)-C(17)-H(17B)	109.8	
H(17A)-C(17)-H(17B)	108.2	
C(17)-C(18)-H(18A)	109.5	
C(17)-C(18)-H(18B)	109.5	
H(18A)-C(18)-H(18B)	109.5	
C(17)-C(18)-H(18C)	109.5	
H(18A)-C(18)-H(18C)	109.5	
H(18B)-C(18)-H(18C)	109.5	
C(26)-C(19)-C(8)	118.6(3)	
C(26)-C(19)-C(15)	106.1(3)	
C(8)-C(19)-C(15)	110.0(3)	
C(26)-C(19)-C(20)	101.2(3)	
C(8)-C(19)-C(20)	108.7(3)	
C(15)-C(19)-C(20)	112.0(2)	
O(5)-C(20)-N(3)	125.6(3)	
O(5)-C(20)-C(19)	126.3(4)	
N(3)-C(20)-C(19)	107.9(3)	
C(22)-C(21)-C(26)	122.8(4)	
C(22)-C(21)-N(3)	128.1(3)	
C(26)-C(21)-N(3)	109.1(3)	
C(21)-C(22)-C(23)	117.2(4)	
C(21)-C(22)-H(22)	121.4	
C(23)-C(22)-H(22)	121.4	
C(24)-C(23)-C(22)	121.3(5)	
C(24)-C(23)-H(23)	119.4	
C(22)-C(23)-H(23)	119.4	
C(23)-C(24)-C(25)	121.1(4)	

C(23)-C(24)-H(24)	119.5	
C(25)-C(24)-H(24)	119.5	
C(26)-C(25)-C(24)	118.9(3)	
C(26)-C(25)-H(25)	120.5	
C(24)-C(25)-H(25)	120.5	
C(25)-C(26)-C(21)	118.8(3)	
C(25)-C(26)-C(19)	131.6(3)	
C(21)-C(26)-C(19)	109.5(3)	
C(18')-C(17')-O(4)	83.7(13)	
C(18')-C(17')-H(17C)	114.7	
O(4)-C(17')-H(17C)	114.7	
C(18')-C(17')-H(17D)	114.7	
O(4)-C(17')-H(17D)	114.7	
H(17C)-C(17')-H(17D)	111.8	
C(9)-N(1)-C(10)	113.5(3)	
C(9)-N(1)-H(1)	123.3	
C(10)-N(1)-H(1)	123.3	
C(9)-N(2)-C(13)	118.9(3)	
C(9)-N(2)-C(12)	109.2(3)	
C(13)-N(2)-C(12)	121.4(3)	
C(20)-N(3)-C(21)	112.1(3)	
C(20)-N(3)-H(3A)	123.9	
C(21)-N(3)-H(3A)	123.9	
C(13)-O(2)-H(2)	109.5	
C(16)-O(4)-C(17)	101.8(7)	
C(16)-O(4)-C(17')	130.3(4)	
C(17)-O(4)-C(17')	53.0(7)	

Symmetry transformations used to generate equivalent atoms:

Table S3.Hydrogen bonds for 100903A [A and deg.].				
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(17)-H(17B)O(3)	0.97	1.98	2.387(12)	102.7
C(15)-H(15)F(1)	0.98	2.51	2.872(4)	101.7
O(2)-H(2)O(5)	0.82	1.94	2.753(3)	169.6
N(1)-H(1)O(1)	0.86	2.04	2.607(4)	123.1

	Table S3.	Hydrogen bonds for	100903A [A and deg.].
--	-----------	--------------------	-----------------------

Symmetry transformations used to generate equivalent atoms:

X-ray Structure and Data² of 5r'

Figure S2 X-Ray crystal structure of 5r'

Table 54 Crystal uata all	a structure reminiment for 100900A		
Empirical formula	$C_{27} H_{25} C l_3 F_3 N_3 O_5$		
Formula weight	634.85		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	Triclinic, P-1		
Unit cell dimensions	a = 10.489(5) A alpha = 73.462(5) deg.		
	b = 11.635(5) A beta $= 80.503(5) deg.$		
	c = 13.375(5) A gamma = 72.854(5) deg.		
Volume	1489.3(11) A^3		
Z, Calculated density	2, 1.416 Mg/m^3		
Absorption coefficient	0.367 mm^-1		
F(000)	652		
Crystal size	0.23x 0.19 x 0.14 mm		
Theta range for data collection	1.89 to 26.31 deg.		
Limiting indices	-12<=h<=13, -15<=k<=15, -17<=l<=17		
Reflection collected/unique	10468/6121[R(int) = 0.0656]		
Completeness to theta $= 28.2$	96.6%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	on 0.9745 and 0.9532		
Refinement method	Full-matrix least-squares on F^2		
Data/restraints/parameters	6121/ 0/ 374		
Data/restraints/parameters	6121/ 0/ 374		

Goodness-of-fit on F ²	1.028
Final R indices [I>2sigma(I)]	R1 = 0.1239, WR2 = 0.3167
R indices (all data)	R1 = 0.2712, $wR2 = 0.4173$
Extinction coefficient	0.010(5)
Largest diff. peak and hole	0.689 and -0.735 e.A^-3

Table S5Bond lengths [A	A] and angles [deg] for 100906A
C(1)-O(1)	1.244(8)
C(1)-C(8)	1.390(9)
C(1)-C(2)	1.530(10)
C(2)-C(7)	1.371(10)
C(2)-C(3)	1.385(9)
C(3)-C(4)	1.369(10)
C(3)-H(3)	0.9300
C(4)-C(5)	1.352(11)
C(4)-H(4)	0.9300
C(5)-C(6)	1.405(12)
C(5)-H(5)	0.9300
C(6)-C(7)	1.355(12)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.403(10)
C(8)-C(19)	1.523(8)
C(9)-N(1)	1.320(8)
C(9)-N(2)	1.359(8)
C(10)-N(1)	1.464(9)
C(10)-C(12)	1.486(10)
C(10)-C(11)	1.503(10)
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
С(11)-Н(11В)	0.9600
С(11)-Н(11С)	0.9600
C(12)-N(2)	1.483(9)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-O(2)	1.396(7)
C(13)-N(2)	1.444(8)
C(13)-C(14)	1.533(10)
C(13)-C(15)	1.534(10)

С	(14)-F(3)	1.317(8)
C	(14)-F(1)	1.328(10)
C	(14)-F(2)	1.341(9)
C	(15)-C(16)	1.506(9)
C	(15)-C(19)	1.537(9)
C	(15)-H(15)	0.9800
C	(16)-O(3)	1.210(8)
C	(16)-O(4)	1.321(8)
C	(17)-C(18)	1.476(12)
C	(17)-O(4)	1.477(8)
C	(17)-H(17A)	0.9700
C	(17)-H(17B)	0.9700
C	(18)-H(18A)	0.9600
C	(18)-H(18B)	0.9600
C	(18)-H(18C)	0.9600
C	(19)-C(26)	1.512(9)
C	(19)-C(20)	1.577(9)
C	(20)-O(5)	1.219(7)
C	(20)-N(3)	1.332(8)
C	(21)-C(22)	1.389(11)
C	(21)-N(3)	1.399(8)
C	(21)-C(26)	1.410(9)
C	(22)-C(23)	1.385(12)
C	(22)-H(22)	0.9300
C	(23)-C(24)	1.394(13)
C	(23)-H(23)	0.9300
C	(24)-C(25)	1.403(11)
C	(24)-H(24)	0.9300
C	(25)-C(26)	1.346(9)
C	(25)-H(25)	0.9300
C	(27)-Cl(3)	1.658(17)
C	(27)-Cl(2)	1.72(2)
C	(27)-Cl(1)	1.85(2)
C	(27)-H(27)	0.9800
N	(1) - H(1)	0.8600
N	(3)-H(3A)	0.8600
0	(2)-H(2)	0.8200
0	(1)-C(1)-C(8)	124.9(7)
0	(1)-C(1)-C(2)	113.1(6)
C	(8)-C(1)-C(2)	122.0(6)

C(7)-C(2)-C(3)	118.2(7)	
C(7)-C(2)-C(1)	122.1(7)	
C(3)-C(2)-C(1)	119.0(7)	
C(4)-C(3)-C(2)	121.1(7)	
C(4)-C(3)-H(3)	119.4	
C(2)-C(3)-H(3)	119.4	
C(5)-C(4)-C(3)	119.2(8)	
C(5)-C(4)-H(4)	120.4	
C(3)-C(4)-H(4)	120.4	
C(4)-C(5)-C(6)	121.3(8)	
C(4)-C(5)-H(5)	119.3	
C(6)-C(5)-H(5)	119.3	
C(7)-C(6)-C(5)	117.8(8)	
C(7)-C(6)-H(6)	121.1	
C(5)-C(6)-H(6)	121.1	
C(6)-C(7)-C(2)	122.3(8)	
C(6)-C(7)-H(7)	118.9	
C(2)-C(7)-H(7)	118.9	
C(1)-C(8)-C(9)	118.1(6)	
C(1)-C(8)-C(19)	124.3(6)	
C(9)-C(8)-C(19)	117.4(6)	
N(1)-C(9)-N(2)	108.5(6)	
N(1)-C(9)-C(8)	126.0(7)	
N(2)-C(9)-C(8)	125.4(6)	
N(1)-C(10)-C(12)	101.0(6)	
N(1)-C(10)-C(11)	110.1(7)	
C(12)-C(10)-C(11)	113.7(7)	
N(1)-C(10)-H(10)	110.6	
C(12)-C(10)-H(10)	110.6	
C(11)-C(10)-H(10)	110.6	
C(10)-C(11)-H(11A)	109.5	
C(10)-C(11)-H(11B)	109.5	
H(11A)-C(11)-H(11B)	109.5	
C(10)-C(11)-H(11C)	109.5	
H(11A)-C(11)-H(11C)	109.5	
H(11B)-C(11)-H(11C)	109.5	
N(2)-C(12)-C(10)	103.4(6)	
N(2)-C(12)-H(12A)	111.1	
C(10)-C(12)-H(12A)	111.1	
N(2)-C(12)-H(12B)	111.1	

С(10)-С(12)-Н(12В)	111.1	
H(12A)-C(12)-H(12B)	109.0	
O(2)-C(13)-N(2)	112.1(6)	
O(2)-C(13)-C(14)	104.2(6)	
N(2)-C(13)-C(14)	108.2(6)	
O(2)-C(13)-C(15)	114.5(6)	
N(2)-C(13)-C(15)	107.3(5)	
C(14)-C(13)-C(15)	110.5(6)	
F(3)-C(14)-F(1)	106.6(7)	
F(3)-C(14)-F(2)	105.4(7)	
F(1)-C(14)-F(2)	107.1(7)	
F(3)-C(14)-C(13)	112.5(7)	
F(1)-C(14)-C(13)	113.5(7)	
F(2)-C(14)-C(13)	111.2(7)	
C(16)-C(15)-C(13)	114.4(5)	
C(16)-C(15)-C(19)	110.4(5)	
C(13)-C(15)-C(19)	113.7(5)	
C(16)-C(15)-H(15)	105.9	
C(13)-C(15)-H(15)	105.9	
C(19)-C(15)-H(15)	105.9	
O(3)-C(16)-O(4)	123.3(7)	
O(3)-C(16)-C(15)	124.1(7)	
O(4)-C(16)-C(15)	112.5(6)	
C(18)-C(17)-O(4)	110.1(7)	
C(18)-C(17)-H(17A)	109.6	
O(4)-C(17)-H(17A)	109.6	
C(18)-C(17)-H(17B)	109.6	
O(4)-C(17)-H(17B)	109.6	
H(17A)-C(17)-H(17B)	108.2	
C(17)-C(18)-H(18A)	109.5	
C(17)-C(18)-H(18B)	109.5	
H(18A)-C(18)-H(18B)	109.5	
C(17)-C(18)-H(18C)	109.5	
H(18A)-C(18)-H(18C)	109.5	
H(18B)-C(18)-H(18C)	109.5	
C(26)-C(19)-C(8)	115.2(5)	
C(26)-C(19)-C(15)	108.1(5)	
C(8)-C(19)-C(15)	110.8(5)	
C(26)-C(19)-C(20)	100.7(6)	
C(8)-C(19)-C(20)	110.2(5)	

C(15)-C(19)-C(20) $111.4(5)$ $O(5)-C(20)-R(19)$ $124.6(6)$ $N(3)-C(20)-C(19)$ $109.1(6)$ $C(22)-C(21)-N(3)$ $129.5(7)$ $C(22)-C(21)-C(26)$ $120.2(8)$ $N(3)-C(2)-C(26)$ $110.3(6)$ $C(23)-C(22)-C(21)$ $118.4(8)$ $C(23)-C(22)-C(21)$ $118.4(8)$ $C(23)-C(22)-H(22)$ 120.8 $C(21)-C(22)-H(22)$ 120.8 $C(22)-C(23)-H(23)$ 119.0 $C(24)-C(23)-H(23)$ 119.0 $C(24)-C(23)-H(23)$ 119.0 $C(23)-C(24)-H(24)$ 121.0 $C(24)-C(25)-H(24)$ 121.0 $C(25)-C(24)-H(24)$ 121.0 $C(26)-C(25)-H(25)$ 119.3 $C(26)-C(25)-H(25)$ 119.3 $C(26)-C(25)-H(25)$ 119.3 $C(26)-C(25)-H(25)$ 119.3 $C(26)-C(26)-C(1)$ $120.1(7)$ $C(25)-C(26)-C(1)$ $120.1(7)$ $C(25)-C(26)-C(1)$ $120.1(7)$ $C(25)-C(26)-C(1)$ $120.1(7)$ $C(25)-C(26)-C(1)$ $120.1(7)$ $C(25)-C(26)-C(1)$ $103.2(7)$ $C(13)-C(27)-H(27)$ 110.6 $C(13)-C(27)-H(27)$ 110.6 $C(10)-N(1)-H(1)$ 123.4 $C(10)-N(1)-H(1)$ 123.4 $C(10)-N(1)-H(1)$ 123.4 $C(0)-N(3)-C(12)$ $108.7(6)$ $C(20)-N(3)-C(12)$ $108.7(6)$ $C(20)-N(3)-C(12)$ $108.7(6)$ $C(20)-N(3)-H(3A)$ 124.2 $C(21)-N(3)-H(3A)$ 124.2 $C(21)-N(3)-H(3A)$ 124.2 $C(13)-O(2)-H(2)$ 109.5 <th></th> <th></th> <th></th>			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)-C(19)-C(20)	111.4(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(5)-C(20)-N(3)	126.2(6)	
N(3)-C(20)-C(19) $109.1(6)$ C(22)-C(21)-N(3) $129.5(7)$ C(22)-C(21)-C(26) $110.3(6)$ C(23)-C(22)-C(21) $118.4(8)$ C(23)-C(22)-H(22) 120.8 C(21)-C(22)-H(22) 120.8 C(21)-C(22)-H(22) 120.8 C(22)-C(23)-C(24) $121.9(9)$ C(22)-C(23)-H(23) 119.0 C(24)-C(23)-H(23) 119.0 C(23)-C(24)-H(24) 121.0 C(23)-C(24)-H(24) 121.0 C(25)-C(24)-H(24) 121.0 C(26)-C(25)-H(25) 119.3 C(26)-C(25)-H(25) 119.3 C(26)-C(25)-H(25) 119.3 C(25)-C(26)-C(19) $131.5(7)$ C(21)-C(26)-C(19) $131.5(7)$ C(21)-C(26)-C(19) $131.5(7)$ C(21)-C(26)-C(19) $108.3(6)$ C(13)-C(27)-Cl(2) 110.6 Cl(3)-C(27)-Cl(1) $111.3(10)$ Cl(2)-C(27)-Cl(1) $113.3(6)$ C(9)-N(1)-C(10) $113.3(6)$ C(9)-N(1)-C(10) $113.3(6)$ C(9)-N(1)-Cl(1) 123.4 C(10)-N(1)+H(1) 123.4 C(10)-N(1)-H(1) 123.4 C(10)-N(1)-H(1) 123.4 C(10)-N(1)-H(1) 123.4 C(10)-N(2)-Cl(2) $108.7(6)$ C(20)-N(3)-C(21) $111.5(6)$ C(20)-N(3)-C(21) $111.5(6)$ C(20)-N(3)-C(12) 109.5 C(16)-O(4)-C(17) $117.8(5)$	O(5)-C(20)-C(19)	124.6(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-C(20)-C(19)	109.1(6)	
C(22)-C(21)-C(26)120.2(8)N(3)-C(21)-C(26)110.3(6) $C(23)-C(22)-C(21)$ 118.4(8) $C(23)-C(22)-H(22)$ 120.8 $C(21)-C(22)-H(22)$ 120.8 $C(22)-C(23)-C(24)$ 121.9(9) $C(22)-C(23)-H(23)$ 119.0 $C(24)-C(23)-H(23)$ 119.0 $C(24)-C(23)-H(24)$ 121.0 $C(23)-C(24)-H(24)$ 121.0 $C(25)-C(24)-H(24)$ 121.0 $C(26)-C(25)-H(25)$ 119.3 $C(26)-C(25)-H(25)$ 119.3 $C(24)-C(25)-H(25)$ 119.3 $C(24)-C(25)-H(25)$ 119.3 $C(24)-C(25)-H(25)$ 119.3 $C(25)-C(26)-C(19)$ 131.5(7) $C(21)-C(26)-C(19)$ 108.3(6) $C(13)-C(27)-Cl(2)$ 110.5(16) $Cl(3)-C(27)-Cl(1)$ 111.3(10) $Cl(2)-C(27)-H(27)$ 110.6 $Cl(3)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(0)-N(1)-H(1)$ 123.4 $C(0)-N(1)-H(1)$ 123.4 $C(0)-N(2)-C(12)$ 108.7(6) $C(20)-N(3)-C(21)$ 111.5(6) $C(20)-N(3)-C(21)$ 111.5(6) $C(20)-N(3)-H(2A)$ 124.2 $C(21)-N(3)-H(3A)$ 124.2 $C(13)-O(2)-H(2)$ 109.5 $C(16)-O(4)-C(17)$ 117.8(5)	C(22)-C(21)-N(3)	129.5(7)	
N(3)-C(21)-C(26) $110.3(6)$ $C(23)-C(22)-C(21)$ $118.4(8)$ $C(23)-C(22)-H(22)$ 120.8 $C(21)-C(22)-H(22)$ 120.8 $C(22)-C(23)-C(24)$ $121.9(9)$ $C(22)-C(23)-H(23)$ 119.0 $C(24)-C(23)-H(23)$ 119.0 $C(23)-C(24)-C(25)$ $117.9(8)$ $C(23)-C(24)-H(24)$ 121.0 $C(25)-C(24)-H(24)$ 121.0 $C(25)-C(24)-H(24)$ $121.3(8)$ $C(26)-C(25)-C(24)$ $121.3(8)$ $C(26)-C(25)-H(25)$ 119.3 $C(24)-C(25)-H(25)$ 119.3 $C(25)-C(26)-C(21)$ $120.1(7)$ $C(25)-C(26)-C(19)$ $131.5(7)$ $C(21)-C(26)-C(19)$ $131.5(7)$ $C(21)-C(26)-C(19)$ $106.3(6)$ $Cl(3)-C(27)-Cl(2)$ 110.6 $Cl(2)-C(27)-Cl(1)$ $111.3(10)$ $Cl(2)-C(27)-H(27)$ 110.6 $Cl(2)-C(27)-H(27)$ 110.6 $Cl(1)-C(27)-H(27)$ 110.6 $Cl(0)-N(1)-H(1)$ 123.4 $C(0)-N(1)-H(1)$ 123.4 $C(0)-N(1)-H(1)$ 123.4 $C(0)-N(2)-C(12)$ $108.7(6)$ $C(20)-N(3)-C(21)$ $111.5(6)$ $C(20)-N(3)-C(21)$ $111.5(6)$ $C(20)-N(3)-H(3A)$ 124.2 $C(21)-N(3)-H(3A)$ 124.2 $C(13)-O(2)-H(2)$ 109.5 $C(16)-O(4)-C(17)$ $117.8(5)$	C(22)-C(21)-C(26)	120.2(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-C(21)-C(26)	110.3(6)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)-C(22)-C(21)	118.4(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)-C(22)-H(22)	120.8	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)-C(22)-H(22)	120.8	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)-C(23)-C(24)	121.9(9)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)-C(23)-H(23)	119.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(23)-H(23)	119.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)-C(24)-C(25)	117.9(8)	
$\begin{array}{ccccc} C(25)-C(24)-H(24) & 121.0 \\ C(26)-C(25)-C(24) & 121.3(8) \\ C(26)-C(25)-H(25) & 119.3 \\ C(24)-C(25)-H(25) & 119.3 \\ C(25)-C(26)-C(21) & 120.1(7) \\ C(25)-C(26)-C(19) & 131.5(7) \\ C(21)-C(26)-C(19) & 108.3(6) \\ C1(3)-C(27)-C1(2) & 110.5(16) \\ C1(3)-C(27)-C1(1) & 111.3(10) \\ C1(2)-C(27)-C1(1) & 103.2(7) \\ C1(3)-C(27)-H(27) & 110.6 \\ C1(2)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(23)-C(24)-H(24)	121.0	
$\begin{array}{cccc} C(26)-C(25)-C(24) & 121.3(8) \\ C(26)-C(25)-H(25) & 119.3 \\ C(24)-C(25)-H(25) & 119.3 \\ C(25)-C(26)-C(21) & 120.1(7) \\ C(25)-C(26)-C(19) & 131.5(7) \\ C(21)-C(26)-C(19) & 108.3(6) \\ C1(3)-C(27)-C1(2) & 110.5(16) \\ C1(3)-C(27)-C1(1) & 111.3(10) \\ C1(2)-C(27)-C1(1) & 103.2(7) \\ C1(3)-C(27)-H(27) & 110.6 \\ C1(2)-C(27)-H(27) & 110.6 \\ C1(2)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(25)-C(24)-H(24)	121.0	
$\begin{array}{ccccc} C(26)-C(25)-H(25) & 119.3 \\ C(24)-C(25)-H(25) & 119.3 \\ C(25)-C(26)-C(21) & 120.1(7) \\ C(25)-C(26)-C(19) & 131.5(7) \\ C(21)-C(26)-C(19) & 108.3(6) \\ C1(3)-C(27)-C1(2) & 110.5(16) \\ C1(3)-C(27)-C1(1) & 111.3(10) \\ C1(2)-C(27)-C1(1) & 103.2(7) \\ C1(3)-C(27)-H(27) & 110.6 \\ C1(2)-C(27)-H(27) & 110.6 \\ C1(2)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C1(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(26)-C(25)-C(24)	121.3(8)	
$\begin{array}{ccccc} C(24)-C(25)-H(25) & 119.3 \\ C(25)-C(26)-C(21) & 120.1(7) \\ C(25)-C(26)-C(19) & 131.5(7) \\ C(21)-C(26)-C(19) & 108.3(6) \\ Cl(3)-C(27)-Cl(2) & 110.5(16) \\ Cl(3)-C(27)-Cl(1) & 111.3(10) \\ Cl(2)-C(27)-Cl(1) & 103.2(7) \\ Cl(3)-C(27)-H(27) & 110.6 \\ Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ Cl(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(26)-C(25)-H(25)	119.3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)-C(25)-H(25)	119.3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(25)-C(26)-C(21)	120.1(7)	
$\begin{array}{ccccc} C(21)-C(26)-C(19) & 108.3(6) \\ Cl(3)-C(27)-Cl(2) & 110.5(16) \\ Cl(3)-C(27)-Cl(1) & 111.3(10) \\ Cl(2)-C(27)-Cl(1) & 103.2(7) \\ Cl(3)-C(27)-H(27) & 110.6 \\ Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(25)-C(26)-C(19)	131.5(7)	
$\begin{array}{ccccccc} Cl(3)-C(27)-Cl(2) & 110.5(16) \\ Cl(3)-C(27)-Cl(1) & 111.3(10) \\ Cl(2)-C(27)-Cl(1) & 103.2(7) \\ Cl(3)-C(27)-H(27) & 110.6 \\ Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(21)-C(26)-C(19)	108.3(6)	
$\begin{array}{ccccc} Cl(3)-C(27)-Cl(1) & 111.3(10) \\ Cl(2)-C(27)-Cl(1) & 103.2(7) \\ Cl(3)-C(27)-H(27) & 110.6 \\ Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	Cl(3)-C(27)-Cl(2)	110.5(16)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(3)-C(27)-Cl(1)	111.3(10)	
$\begin{array}{cccccc} Cl(3)-C(27)-H(27) & 110.6 \\ Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	Cl(2)-C(27)-Cl(1)	103.2(7)	
$\begin{array}{cccccc} Cl(2)-C(27)-H(27) & 110.6 \\ Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 108.7(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	Cl(3)-C(27)-H(27)	110.6	
$\begin{array}{ccccc} Cl(1)-C(27)-H(27) & 110.6 \\ C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	Cl(2)-C(27)-H(27)	110.6	
$\begin{array}{cccc} C(9)-N(1)-C(10) & 113.3(6) \\ C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \end{array}$	Cl(1)-C(27)-H(27)	110.6	
$\begin{array}{ccccc} C(9)-N(1)-H(1) & 123.4 \\ C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \end{array}$	C(9)-N(1)-C(10)	113.3(6)	
$\begin{array}{cccc} C(10)-N(1)-H(1) & 123.4 \\ C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \\ \end{array}$	C(9)-N(1)-H(1)	123.4	
$\begin{array}{cccc} C(9)-N(2)-C(13) & 120.5(6) \\ C(9)-N(2)-C(12) & 108.7(6) \\ C(13)-N(2)-C(12) & 123.5(6) \\ C(20)-N(3)-C(21) & 111.5(6) \\ C(20)-N(3)-H(3A) & 124.2 \\ C(21)-N(3)-H(3A) & 124.2 \\ C(13)-O(2)-H(2) & 109.5 \\ C(16)-O(4)-C(17) & 117.8(5) \end{array}$	C(10)-N(1)-H(1)	123.4	
C(9)-N(2)-C(12)108.7(6) $C(13)-N(2)-C(12)$ 123.5(6) $C(20)-N(3)-C(21)$ 111.5(6) $C(20)-N(3)-H(3A)$ 124.2 $C(21)-N(3)-H(3A)$ 124.2 $C(13)-O(2)-H(2)$ 109.5 $C(16)-O(4)-C(17)$ 117.8(5)	C(9)-N(2)-C(13)	120.5(6)	
C(13)-N(2)-C(12) 123.5(6) C(20)-N(3)-C(21) 111.5(6) C(20)-N(3)-H(3A) 124.2 C(21)-N(3)-H(3A) 124.2 C(13)-O(2)-H(2) 109.5 C(16)-O(4)-C(17) 117.8(5)	C(9)-N(2)-C(12)	108.7(6)	
C(20)-N(3)-C(21) 111.5(6) C(20)-N(3)-H(3A) 124.2 C(21)-N(3)-H(3A) 124.2 C(13)-O(2)-H(2) 109.5 C(16)-O(4)-C(17) 117.8(5)	C(13)-N(2)-C(12)	123.5(6)	
C(20)-N(3)-H(3A) 124.2 C(21)-N(3)-H(3A) 124.2 C(13)-O(2)-H(2) 109.5 C(16)-O(4)-C(17) 117.8(5)	C(20)-N(3)-C(21)	111.5(6)	
C(21)-N(3)-H(3A) 124.2 C(13)-O(2)-H(2) 109.5 C(16)-O(4)-C(17) 117.8(5)	C(20)-N(3)-H(3A)	124.2	
C(13)-O(2)-H(2) 109.5 C(16)-O(4)-C(17) 117.8(5)	C(21)-N(3)-H(3A)	124.2	
C(16)-O(4)-C(17) 117.8(5)	C(13)-O(2)-H(2)	109.5	
	C(16)-O(4)-C(17)	117.8(5)	

Symmetry transformations used to generate equivalent atoms:

Table 50.	. Hydrogen bonds for 100903A [A and deg.].			
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(15)-H(15)F(2)	0.98	2.54	2.902(8)	101.6
C(12)-H(12A)F(1)	0.97	2.39	2.795(9)	104.8
C(6)-H(6)O(2)#1	0.93	2.49	3.400(10)	165.4
N(3)-H(3A)O(5)#2	0.86	2.05	2.853(7)	155.4
O(2)-H(2)F(3)	0.82	2.35	2.767(7)	112.6
N(1)-H(1)O(1)#3	0.86	2.10	2.867(8)	148.4
N(1)-H(1)O(1)	0.86	2.05	2.623(8)	123.2

Table S6. Hydrogen bonds for 100903A [A and deg.].

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 -x,-y+1,-z #3 -x,-y+1,-z+1

Electronic Supplementary Material (ESI) for Green Chemistry This journal is C The Royal Society of Chemistry 2012

References and Notes

- 1. (a) Huang, Z.-T.; Wang, M.-X. Synthesis 1992, 12, 1273–1276. (b) Li, Z.-J.; Charles, D. Synth. Commun. 2001, 31, 527–533.
- 2. CCDC 890741 contain the supplementary crystallographic data for compound **5r**. CCDC 890742 contain the supplementary crystallographic data for compound **5r'**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.