Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water

Yawen Wei^a, Dong Xue,*^a Qian Lei,^a Chao Wang^a and Jianliang Xiao*^{a,b}

^a Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education,

School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an,

710062, P. R. China.

E-mail: Xudong_welcome@snnu.edu.cn

^b Liverpool Centre for Materials & Catalysis, Department of Chemistry, University of

Liverpool, Oxford Street, Liverpool, L69 7ZD, UK

Fax: 44-151-7943588

E-mail: j.xiao@liv.ac.uk

Supporting Information

1.	General information	S2
2.	General procedure for preparation of cyclometalated complexes	S2
3.	pH effect on transfer hydrogenation of acetophenone with precatalyst 1 and 2 in water	S2
4.	General procedure for the reduction of ketones with the precatalyst 3	S4
5.	General procedure for the reduction of aldehydes with the precatalyst 3	S4
6.	Procedure for large scale transfer hydrogenation in water	S5
7.	Analytic data of catalysts and products	S5-S13
8.	References	S14
9.	Traces of ¹ H NMR and ¹³ C NMR spectra	S15-S45

1. General information

Unless otherwise specified, the chemicals were obtained commercially and used without further purification. MeOH was dried over magnesium and distilled prior to use. Dichloromethane (DCM) was dried over CaH₂ and distilled prior to use. Water was distilled water. NMR spectra were recorded on a Bruker 300 or 400 MHz NMR spectrometer with TMS as the internal standard. GC chromatography and GC-MS analysis was carried out on an Agilent 7890A GC with a HP-5 MS column (quartz capillary column, 30 m x 0.25 mm x 0.25 μ m) and an Agilent 5975C mass-selective detector (58 psi helium gas, 58 psi hydrogen gas, injector temperature 250 °C, FID detector temperature 300 °C). Imines were prepared according to the literature.¹ The pH values were measured by a Sartorius PB-10 pH meter at 25 °C.

2. General procedure for preparation of cyclometalated complexes ^{2, 3, 4}

To $IrCl_3 \cdot 3H_2O$ (0.5 g, 1.35 mmol) in 13 mL methanol was added excess pentamethylcyclopentadiene (0.4 mL), the mixture was refluxed for 36 h. After the mixture was cooled to room temperature, the product $[Cp*IrCl_2]_2$ was isolated by filtration and washed with cold methanol and dried in *vacuo*.

[Cp*IrCl₂]₂ (1 equiv.), an imine ligand (2.2 equiv.) and NaOAc (10 equiv.) were placed into a Schlenk tube. The tube was then degassed and recharged with argon three times. DCM was then added and the resulting mixture was stirred at room temperature overnight. The reaction mixture was filtered through celite, and dried over Na₂SO₄. Following removal of the solvent under vacuum the resulting solid was washed with diethyl ether/petrol ether to afford cyclometalated iridium complexes.

3. pH effect on transfer hydrogenation of acetophenone with precatalyst 1 and 2 in water

(a) General procedure for transfer hydrogenation of acetopheone at different pH values Acetophenone (5 mmol), complex **1** or **2** (0.0025 mmol) and a magnetic stir bar were placed in a pressure tube. To the mixture was injected 4 mL HCOOH/HCOONa aqueous solution with the pH value showen in the text (**Scheme 1**). The mixture was bubbled with argon for 15 min, and then stirred at 80 °C for 1 h. After cooling to room temperature, the

reaction was quenched with aqueous NaHCO₃ solution, and extracted with ethyl acetate (7 x 3 mL). The organic layers were washed with brine, and dried over Na₂SO₄. The conversion was determined by an Agilent 7890A GC with a HP-5 MS column (quartz capillary column, 30 m x 0.25 mm x 0.25 μ m) and an Agilent 5975C mass-selective detector (58 psi helium gas, 58 psi hydrogen gas, injector temperature 250 °C, FID detector temperature 300 °C). The retention time of acetophenone was 5.80 min, and the 1-phenylethanol was 5.71 min.

(b) Procedure for preparation of HCOOH/HCOONa aqueous solutions of different pH values

The solutions with different pH values used for reactions in **Scheme 1** in the text were prepared by mixing HCOONa, HCOOH (88%, wt) and H₂O in a beaker and the pH values were measured by a pH meter at 25 $^{\circ}$ C.

 C^0 = total moles of HCOOH and HCOONa added per liter of H₂O.

For pH 0.5, 2 g HCOONa (29.4 mmol),10.3 mL HCOOH (88%, wt) (240 mmol) and 2.5 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 21$ mol/L.

For pH 1.55, 2 g HCOONa (29.4 mmol), 8.3 mL HCOOH (88%, wt) (194 mmol) and 2.8 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 20$ mol/L.

For pH 2.0, 2 g HCOONa (29.4 mmol), 5.2 mL HCOOH (88%, wt) (121 mmol) and 2.4 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 20$ mol/L.

For pH 3.0, 2 g HCOONa (29.4 mmol), 2.2 mL HCOOH (88%, wt) (51 mmol) and 2.8 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 16$ mol/L.

For pH 4.0, 2 g HCOONa (29.4 mmol), 1.1 mL HCOOH (88%, wt) (194 mmol) and 2.8 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 14$ mol/L.

For pH 4.5, 2 g HCOONa (29.4 mmol), 0.6 mL HCOOH (88%, wt) (14 mmol) and 2.8 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 13$ mol/L.

For pH 5.0, 3 g HCOONa (44.1 mmol), 0.4 mL HCOOH (88%, wt) (9 mmol) and 4.2 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 11$ mol/L.

For pH 5.2, 5 g HCOONa (73.5 mmol), 0.3 mL HCOOH (88%, wt) (7 mmol) and 7 mL H₂O were used. The total concentration of HCOONa and HCOOH, $C^0 = 11$ mol/L.

When C^0 values varied from 11 mol/L to 20 mol/L, the effect of C^0 on conversions at the same pH was less than 20% under the conditions above.

4. General procedure for the reduction of ketones with the precatalyst 3

Ketone (5 mmol), complex **3** (0.0025 mmol) and a magnetic stir bar were placed in a pressure tube. To the mixture was injected 4 mL HCOOH/HCOONa aqueous solution (pH = 2.5, $C^0 = 20 \text{ mol/L}$). The mixture was bubbled with argon for 15 min, and then stirred at 80 °C for 4 or 12 h. After cooling to room temperature, the reaction was quenched with aqueous NaHCO₃ solution, and extracted with ethyl acetate (7 x 3 mL). The organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The product was purified by flash chromatography using petroleum ether and ethyl acetate as elute. 2 mL and 1 mL aqueous solution of HCOOH/HCOONa was used for S/C = 1000 and 500, respectively. For products with low boiling points, **7q** and **7r**, the yields were determined by GC. The retention times for ketone **6r** and alcohol **7r** were 6.17 min and 6.65 min respectively.

5. General procedure for the reduction of aromatic aldehydes with the precatalyst 3

Aldehyde (2.5 mmol), complex **3** (0.0025 mmol) and a magnetic stir bar were placed in a pressure tube. To the mixture was injected 2 mL HCOOH/HCOONa aqueous solution (pH = 2.5, $C^0 = 20$ mol/L). The mixture was bubbled with argon for 15 min, and then stirred at 80 °C for 12 h. After cooling to room temperature, the reaction was quenched with aqueous NaHCO₃ solution, and extracted with ethyl acetate (7 x 3 mL). The organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The product was purified by flash chromatography using petroleum ether and ethyl acetate as elute. The volume of HCOOH/HCOONa aqueous solution was 4 mL for S/C = 2000.

6. Procedure for large scale transfer hydrogenation in water

Acetophenone (50 mmol), complex **3** (0.025 mmol) and a magnetic stir bar were placed in a pressure tube. To the mixture was injected 40 mL HCOOH/HCOONa aqueous solution (pH 2.5, $C^0 = 20 \text{ mol/L}$). The mixture was bubbled with argon for 15 min, and then stirred at 80 °C for 24 h. After cooling to room temperature, the reaction was quenched with aqueous NaHCO₃ solution, and extracted with ethyl acetate (50 x 3 mL). The organic layers were washed with brine, dried over Na₂SO₄, and evaporated. 5.82 g of product was obtained by flash chromatography using petroleum ether and ethyl acetate as elute (97% yield).

7. Analytic data of catalysts and products

Iridium complex 1⁴: Yellow solid; ¹H NMR (300 MHz, CDCl₃, 298 K) δ (ppm): 7.97 (s, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 12.9 Hz, 3H), 6.91 (s, 2H), 3.79 (s, 3H), 2.38 (s, 3H), 1.37 (s, 15H); ¹³C NMR (75 MHz, CDCl₃, 298 K) δ (ppm): 180. 9, 167.6, 158.2, 151.9, 143.7, 138.3, 128.0, 124.4, 123.8, 119.5, 114.4, 89.9, 55.6, 17.1, 8.5; HRMS (ESI) for C₂₆H₂₈ClIrN₂O [M-Cl]⁺: calc.: 577.1831. Found: 577.1818.

Iridium complex 2⁴: Red solid; ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm): 7.45 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 4.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.58 (dd, *J* = 8.0, 4.0 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 2.38 (s, 3H), 1.44 (s, 15H); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ (ppm): 180.1 , 170.4, 162.1, 157.6, 144.3, 141.3, 130.0, 124.5, 119.2, 112.8, 107.8, 89.0, 55.5, 55.0, 16.8, 8.6; HRMS (ESI) for C₂₆H₃₁ClIrNO₂ [M-Cl]⁺: calc.: 582.1984. Found: 582.1979.

Iridium complex 3: Red solid; ¹H NMR (300 MHz, CDCl₃, 298 K) δ (ppm): 7.92 (s, 2H), 7.44-7.36 (m, 3H), 7.19 (dd, J = 17.6, 7.7 Hz, 2H), 6.90 (s, 1H), 2.41 (s, 3H), 1.41 (s, 15H); ¹³C NMR (75 MHz, CDCl₃, 298 K) δ (ppm): 180.8, 170.5, 150.5, 146.5, 137.4, 129.8, 127.4, 126.5, 124.5, 123.0, 89.4, 17.0, 8.4; HRMS (ESI) for C₂₅H₂₆ClIrN₂ [M-Cl]⁺: calc.: 547.1725. Found: 547.1711.

Iridium complex 4: Orange solid; ¹H NMR (300 MHz, CDCl₃, 298 K) δ (ppm): 7.49-7.35 (m, 4H), 7.23-7.20 (m, 3H), 6.59 (d, J = 7.9 Hz, 1H), 3.91 (s, 3H), 2.39 (s, 3H), 1.42 (s, 15H); ¹³C NMR (75 MHz, CDCl₃, 298 K) δ (ppm): 179.8, 170.8, 162.2, 150.9, 141.0, 130.1, 126.0, 119.3, 107.9, 89.0, 55.0, 16.8, 8.5; HRMS (ESI) for C₂₅H₂₉ClIrNO [M-Cl]⁺: calc.: 552.1878. Found: 552.1873.

Iridium complex 5: Orange solid; ¹H NMR (300 MHz, CDCl₃, 298 K) δ (ppm): 7.64 (s, 1H), 7.41 (d, *J* = 7.4 Hz, 3H), 7.25-7.21 (m, 2H), 6.84 (d, *J* = 7.2 Hz, 2H), 2.45 (s, 3H), 2.41 (s, 3H), 1.41 (s, 15H); ¹³C NMR (75 MHz, CDCl₃, 298 K) δ (ppm): 180.8, 168.4, 150.8, 145.0, 142.1, 135.8, 128.4, 126.1, 122.6, 89.0, 22.0, 16.8, 8.4; HRMS (ESI) for C₂₅H₂₉ClIrN [M-Cl]⁺: calc.: 536.1929. Found: 536.1925.

1-Phenylethanol 7a⁵: 585mg; 96% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.33-7.31 (m, 5H), 4.82 (q, *J* = 6.4 Hz, 1H), 2.36 (s, 1H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 145.9, 128.5, 127.4, 125.4, 70.3, 25.1; MS(EI) for C₈H₁₀O [M+H]⁺: 123.

1-(4-Tolyl)ethanol 7b⁵: 591mg; 87% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl3) δ (ppm): 7.19 (d, J = 6.0, 2H), 7.10 (d, J = 6.0, 2H), 4.4 (q, J = 6.4 Hz, 1H), 2.59 (d, J = 10.2 Hz, 1H), 2.30 (s, 3H), 1.40 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 143.0, 137.0, 129.1, 125.4, 70.1, 25.1, 21.1; MS (EI) for C₉H₁₂O [M+H]⁺: 137.

1-(4-Methoxyphenyl)ethanol 7c⁶: 60mg; 79% yield (S/C=200); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.27 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 7.9 Hz, 2H), 4.80 (q, J = 6.4, 1H), 3.77 (s, 3H), 2.30 (brs, 1H), 1.44 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 159.0, 138.1, 126.7, 113.9, 69.9, 55.3, 25.0; MS(EI) for C₉H₁₂O₂ [M+H]⁺: 153.

1-(4-Nitrophenyl)ethanol 7d⁷: 812mg; 97% yield (S/C=2000); yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.13 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 4.99 (d, *J* = 6.4 Hz 1H), 3.06 (brs, 1H), 1.49 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 153.4, 147.0, 126.1, 123.6, 69.3, 25.3; HRMS(ESI) for C₈H₉NO₃ [M+Na]⁺, m/z calc.: 190.0480, found: 190.0483.

1-(4-(Trifluoromethyl)phenyl)ethanol 7e⁶: 904mg; 95% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.57 (d, *J* = 7.9 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 4.87 (d, *J* = 6.4 Hz, 1H), 2.85 (d, *J* = 4.9 Hz, 1H), 1.44 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 149.7, 129.6 (q, ²*J*_{C-F} = 32.0 Hz), 125.8, 125.5 (q, ³*J*_{C-F} = 4.0 Hz) 124.3 (q, ¹*J*_{C-F} = 270.0 Hz), 69.7, 25.2; HRMS(ESI) for C₉H₉F₃O [M-H]⁻, m/z calc.: 189.0527, found: 189.0539.

4-(1-Hydroxyethyl)benzonitrile 7f⁸: 333mg; 91% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.62 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 4.95 (d, J = 6.4 Hz, 1H), 2.27 (s, 1H), 1.49 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 151.4, 132.3, 126.1, 118.9, 110.7, 69.4, 25.3; MS(EI) for C₉H₉NO [M+H]⁺: 148.

1-(4-Fluorophenyl)ethanol 7g⁶: 623mg; 89% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.29 (d, J = 19.5 Hz, 2H), 7.02 (t, J = 7.6 Hz, 2H), 4.87 (d, J = 6.0 Hz, 1H), 1.98 (s, 1H), 1.46 (d, J = 6.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 162.5 (d, ¹ $J_{C-F} = 243.8$ Hz), 141.6, 127.1 (d, ³ $J_{C-F} = 7.5$ Hz), 115.1 (d, ² $J_{C-F} = 21.0$ Hz), 69.6, 25.2; MS(EI) for C₈H₉FO [M+H]⁺: 141.

1-(4-Chlorophenyl)ethanol 7h⁹: 354mg; 89% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.29 (d, J = 5.7 Hz, 4H), 4.86 (q, J = 6.0 Hz, 1H), 1.90 (s, 1H), 1.45 (d, J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 144.3, 133.0, 128.5, 126.8, 69.6, 25.2; MS(EI) for C₈H₉ClO [M+H]⁺: 157.

1-(4-Bromophenyl)ethanol 7i⁵: 470mg; 94% yield (S/C=1000); pale yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.46 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 4.86 (q, *J* = 6.0 Hz, 1H), 1.88 (s, 1H), 1.46 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 144.8, 131.5, 127.18, 121.1, 69.6, 25.2; MS(EI) for C₈H₉BrO [M+H]⁺: 201.

1-(3-Nitrophenyl)ethanol 7j⁷: 803mg; 96% yield (S/C=2000); yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.21 (s, 1H), 8.07 (d, J = 6.8 Hz, 1H), 7.69 (s, 1H), 7.49 (t, J = 6.0 Hz, 1H), 4.99 (d, J = 6.0 Hz, 1H), 2.90 (brs, 1H), 1.51 (d, J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 148.1, 131.7, 129.4, 122.2, 120.3, 69.2, 25.3; HRMS(ESI) for C₈H₉NO₃ [M+Na]⁺, calc.: 190.0480, found: 190.0485.

1-(3-Bromophenyl)ethanol $7k^5$: 937mg; 93% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.48 (s, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.20 (dd, J = 12.9, 7.4 Hz, 2H), 4.76 (q, J = 6.4 Hz, 1H), 2.77 (s, 1H), 1.41 (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 148.2, 130.4, 130.1, 128.6, 124.1, 122.6, 69.6, 25.2; MS(EI) for C₈H₉BrO [M+H]⁺: 201.

1-(3-(Trifluoromethyl)phenyl)ethanol 71⁹: 860mg; 91% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.62 – 7.43 (m, 4H), 4.90 (q, *J* = 6.4 Hz, 1H), 2.49 (s, 1H), 1.47 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 146.8, 130.5 (q, ²*J*_{C-F} = 32.0 Hz), 128.8, 125.9 (q, ¹*J*_{C-F} = 246.8 Hz), 124.0, 122.2, 69.7, 25.2; MS(EI) for C₉H₉F₃O [M+H]⁺: 191.

1-(3,5-Bis(trifluoromethyl)phenyl)ethanol 7m⁸: 580mg; 90% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.83 (s, 2H), 7.79 (s, 1H), 5.02 (q, *J* = 6.4 Hz, 1H), 2.30 (s, 1H), 1.53 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 148.2, 131.8 (q, ²*J*_{C-F} = 33.0 Hz), 125.6, 123.2 (q, ¹*J*_{C-F} = 270.0 Hz), 121.3, 69.2, 25.2; HRMS(ESI) for C₁₀H₈F₆O [M-H]⁻, m/z calc.: 257.0401, found: 257.0414.

7n

1-(2-fluorophenyl)ethanol 7n⁸: 319mg; 91% yield (S/C=1000); pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 1H), 7.21 (m, 1H), 7.13 (m, 1H), 7.00 (m, 1H), 5.17 (d, *J* = 6.1 Hz, 1H), 2.32 (s, 1H), 1.48 (d, *J* =6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 159.7 (d, ¹*J*_{C-F} = 245.2 Hz), 132.7 (d, ³*J*_{C-F} = 13.3 Hz), 128.7 (d, ⁴*J*_{C-F} = 8.2 Hz), 126.6 (d, ⁵*J*_{C-F} = 4.6 Hz), 124.3 (d, ⁶*J*_{C-F} = 3.4 Hz), 115.3 (d, ²*J*_{C-F} = 21.8 Hz), 64.4, 24.0; MS(EI) for C₈H₉FO [M+H]⁺: 141.#

1-(Naphthalen-2-yl)ethanol 70⁵: 766mg; 89% yield (S/C=2000); pale yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.77–7.71 (m, 4H), 7.44–7.41 (m, 3H), 4.94 (dd, J = 12.9, 6.4 Hz, 1H), 2.41 (s, 1H), 1.56 (d, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.29, 133.40, 132.97, 128.30, 127.99, 127.72, 126.15, 125.80, 123.90, 123.85, 70.45, 25.12; MS(EI) for C₁₂H₁₂O [M+H]⁺: 173.

4-Phenylbutan-2-ol 7p⁸: 364mg; 97% yield, (S/C=1000); pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.31 (m, 2H), 7.22 (m, 3H), 3.83 (dt, *J* = 12.3, 6.2 Hz, 1H), 2.73 (m, 2H), 1.80 (m, 3H), 1.25 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 142.1, 128.4, 125.8, 67.5, 40.9, 32.2, 23.6; MS(EI) for C₁₀H₁₄O [M+H]⁺: 151.

Cyclohexanol 7q⁷: 100% conversion (S/C=2000), GC retention time: 5.90 min; colorless liquid; ¹H NMR (400 MHz, CDCl3) δ (ppm): 3.61-3.56 (m, 1H), 2.10-2.09 (m, 1H), 1.86-1.85 (m, 2H), 1.71-1.69 (m, 2H), 1.52-1.51 (m, 1H), 1.25-1.12 (m, 5H); ¹³C NMR (101 MHz, CDCl3) δ (ppm) 70.3, 35.5, 25.4, 25.1; MS(EI) for C₆H₁₂O [M+H]⁺: 101.

octan-2-ol 7r¹⁰: 100% conversion (S/C=2000), GC retention time: 6.65 min; colorless liquid; ¹H NMR (400 MHz, CDCl3) δ (ppm): 3.77-3.75 (m, 1H), 1.54 (s, 1H), 1.41-1.15 (m, 12H), 0.87-0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl3) δ (ppm) 68.1, 39.4, 31.8, 29.3, 25.7, 23.4, 22.6, 14.1; MS(EI) for C₈H₁₈O [M+H]⁺: 131.

Phenyl methanol 9a¹¹: 515mg; 95% yield (S/C=2000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.30-7.21 (m, 5H), 4.57 (s, 2H), 2.70 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 141.0, 128.5, 127.5, 127.0, 64.9; MS(EI) for C₇H₈O [M+H]⁺: 109.

m-Tolylmethanol 9b¹¹: 240mg; 79% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.23-7.08 (m, 4H), 4.60 (s, 2H), 2.34 (s, 3H), 2.10 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 141.0, 138.2, 128.4, 128.3, 127.8, 124.1, 65.2, 65.1, 21.4; MS(EI) for C₈H₁₀O [M+H]⁺: 123.

(4-Methoxyphenyl)methanol 9c¹¹: 250mg; 73% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.27 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 4.58 (s, 2H), 3.79 (s, 3H), 1.92 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 159.2, 133.3, 128.6, 114.0, 64.8, 55.3; MS(EI) for C₈H₁₀O₂ [M+H]⁺: 139.

(4-Nitrophenyl)methanol 9d¹¹: 285mg; 75% yield (S/C=1000); yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.22 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 4.84 (d, *J* = 5.4 Hz, 2H), 1.98 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm):148.3, 147.3, 127.0, 123.7, 64.0; MS(EI) for C₇H₇NO₃ [M+H]⁺:154.

(4-(Trifluoromethyl)phenyl)methanol 9e¹¹: 408mg; 93% yield (S/C=1000); pale yellow liquid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.61 (d, *J* = 7.8 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 4.76 (s, 2H), 1.95 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 144.7, 129.6 (q, ²*J*_{C-F} = 32.0 Hz), 126.8, 125.4, 124.2 (q, ¹*J*_{C-F} = 270.0 Hz), 64.3; HRMS(ESI) for C₈H₇F₃O [M-H]⁻, m/z calc.: 175.0371, found: 175.0375.

(4-Fluorophenyl)methanol 9f¹¹: 590mg; 94% yield (S/C=2000); pale yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.31-7.27 (m, 2H), 7.05-6.99 (m, 2H), 4.60 (s, 2H), 2.28 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 162.3 (d, ¹*J*_{C-F} = 243.8 Hz), 128.7 (d, ³*J*_{C-F} = 8.3 Hz), 115.3 (d, ²*J*_{C-F} = 21.8 Hz), 64.5; MS(EI) for C₇H₇FO [M+H]⁺:127.

(4-Chlorophenyl)methanol 9g¹¹: 285mg; 80% yield (S/C=1000); pale yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.33-7.26 (m, 4H), 4.64 (s, 2H), 1.95 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 139.3, 133.3, 128.7, 128.3, 64.4; MS(EI) for C₇H₇ClO [M+H]⁺: 143.

(2,4-Dichlorophenyl)methanol 9h¹²: 273mg; 62% yield (S/C=1000); pale yellow solid; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.35 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 4.72 (s, 2H), 2.28 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 136.73, 133.78, 133.11, 129.29, 129.07, 127.21, 61.91; MS(EI) for C₇H₆ Cl₂O [M+H]⁺:177.

8. References

- 1. J. S. M. Samec and J. E. Backvall, Chem. Eur. J., 2002, 8, 2955-2961.
- 2. R. G. Ball, W. A. G. Graham, D. M. Heinekey, J. K. Hoyano, A. D. McMaster, B. M. Mattson and S. T. Michel, *Inorg. Chem.*, 1990, **29**, 2023-2025.
- 3. D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton and D. R. Russell, *Dalton Trans.*, 2003, 4132-4138.
- 4. C. Wang, A. Pettman, J. Bacsa and J. L. Xiao, *Angew. Chem. Int. Ed.*, 2010, **49**, 7948-7552.
- 5. C. Azerraf and D. Gelman, Chem. Eur. J., 2008, 14, 10364-10368.
- 6. I. P. Query, P. A. Squier, E. M. Larson, N. A. Isley and T. B. Clark, *J. Org. Chem.*, 2011, **76**, 6452-6456.
- 7. T. Zweifel, J. -V. Naubron, T. Büttner, T. Ott and H. Grützmacher, *Angew. Chem. Int. Ed.*, 2008, **47**, 3245-3249.
- 8. E. Buitrago, F. Tinnis and H. Adolfsson, Adv. Synth. Catal., 2012, 354, 217-222.
- 9. J. Q. Yu, H. C. Wu, C. Ramarao, J. B. Spencer and St. V. Ley, *Chem. Commun.*, 2003, 678-679.
- 10. A. M. Tondreau, E. Lobkovsky and P. J. Chirik, Org. Lett., 2008, 10, 2789-2792.
- 11. X. F. Wu and J. L. Xiao, Chem. Commun., 2007, 2449-2466.
- 12. N. Azizi, E. Batebi, S. Bagherpour and H. Ghafuri, RSC Adv., 2012, 2, 2289-2293.

9. Traces of ¹H NMR and ¹³C NMR spectra

90 80 f1 (ppm)

#

