Supporting information

Facile One-pot Synthesis of V_xO_y@C Catalysts Using Sucrose for Direct Hydroxylation of Benzene to Phenol

Weitao Wang, Guodong Ding, Tao Jiang*, Peng Zhang, Tianbin Wu and Buxing Han*

Beijing National Laboratory for Molecular Sciences (BNLMS), Centre for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Tel./fax: +86 10 62562821. E-mail addresses: Jiangt@iccas.ac.cn (Tao Jiang); Hanbx@iccas.ac.cn (Buxing Han).

Entry	Catalysts	V 2P _{3/2}
1	V _x O _y @C-0.293-120	516.5
2	V _x O _y @C-0.195-120	516.9
3	V _x O _y @C-0.098-120	516.9
4	V _x O _y @C-0.05-120	516.0
5	V _x O _y @C-0.025-120	515.5

Table S1 The V $2P_{3/2}$ of $V_xO_y@C$ catalysts.

Table S2 Catalytic performances of the $V_x O_y @C$ catalysts prepared from different V precursors

Entry	Catalysts	V% (ICP)	V 2P _{3/2}	Phenol selectivity [%]	Phenol yield [%]
1	V _x O _y @C-Cl	0.91	a	96.6	5.9
2	V _x O _y @C-A	4.19	516.7	91.6	8.9

Reaction conditions: catalyst, 25 mg; ascorbic acid, 0.8 g; acetonitrile, 2.0 g; benzene, 1.0 mL; O_2 pressure, 3.0 MPa; temperature, 80 °C, time, 10 h. ^a The V content was too low to be detected.

The vanadium content (4.19 wt%) and vanadium species (516.7 eV) of the $V_xO_y@C-A$ detected from the XPS were similar to those of the $V_xO_y@C-0.195-120$ (Table 2 entry 2, 4.38 wt%; Table S1 entry 2, 516.9 eV). Therefore, the yield of phenol over the $V_xO_y@C-A$ (8.9%) was similar to that over $V_xO_y@C-0.195-120$ (Table 2, 9.2%). The low vanadium content of the $V_xO_y@C-C1$ (0.91 wt%) was the main reason for that $V_xO_y@C-C1$ gave the low yield of phenol (5.9%).

Fig. S1 The dependence of amount of catalysts obtained on the amount of NH_4VO_3 and the hydrothermal temperature.

Fig. S2 ¹³C NMR spectrum of the reaction solution of the hydrothermal process.

(a) $V_xO_y@C-0.293-120$, (b) $V_xO_y@C-0.195-120$, (c) $V_xO_y@C-0.098-120$, (d) $V_xO_y@C-0.05-120$, (e) $V_xO_y@C-0.025-120$, (f) $V_xO_y@C-0.195-150$, (g) $V_xO_y@C-0.195-180$, (h) $V_xO_y@C-0.195-210$, (i) $V_xO_y@C-0.025-180$.

Fig. S4 O1s XPS spectrum of the V_xO_y@C-0.195-120.

(a) $V_xO_y@C-0.293-120$, (b) $V_xO_y@C-0.195-120$, (c) $V_xO_y@C-0.098-120$, (d) $V_xO_y@C-0.025-120$, (e) $V_xO_y@C-0.195-150$, (f) $V_xO_y@C-0.195-180$, (g) $V_xO_y@C-0.195-210$, (h) $V_xO_y@C-0.025-180$.

Fig. S6 The SEM images of $V_xO_y@C$ catalysts. (a) $V_xO_y@C-0.025-120$, (b) $V_xO_y@C-0.195-120$, (c) $V_xO_y@C-0.195-180$, (d) $V_xO_y@C-0.025-180$.

Fig. S7 Nitrogen adsorption-desorption isotherm of the $V_x O_y @C-0.195-120$.

Fig. S8 The catalyst $V_x O_y @C-0.195-120$ dispersion mixtures stood for 0 h, 0.5 h and 2.5 h after stirring. a, water+benzene; b, benzene; c, acetonitrile+benzene

Fig. S9 The influence of reaction temperature on the hydroxylation of benzene to phenol over the $V_xO_v@C-0.195-120$ catalyst.

Reaction conditions: catalyst, 25 mg; ascorbic acid, 0.8 g; acetonitrile, 2.0 g; benzene, 1.0 mL; O_2 pressure, 3.0 MPa; reaction time, 10 h.

Fig. S10 The influence of oxygen pressure on the hydroxylation of benzene to phenol over the $V_xO_y@C-0.195-120$ catalyst.

Reaction conditions: catalyst, 25 mg; ascorbic acid, 0.8 g; acetonitrile, 2.0 g; benzene, 1.0 mL; temperature, 80 $^{\circ}$ C, reaction time, 10 h.

Fig. S11 Reuse of the catalysts for benzene hydroxylation

Reaction conditions: catalyst, 25 mg; ascorbic acid, 0.8 g; acetonitrile, 2.0 g; benzene, 1.0 mL; O_2 pressure, 3.0 MPa; temperature, 80 °C; reaction time, 10 h.

The reuse results of the $V_xO_y@C$ catalysts are shown in Fig. S11. It can be found that the activity of the catalysts gradually declined, which may be due to the leaching of V. The supported vanadium catalysts for oxidation usually faced the situation of V leaching. Further investigation is required to improve the stability of the catalysts.