Electronic Supplementary Information

Synthesis of carbonates by catalytic reaction of phenol and methyl formate as alternative to the use of carbon monoxide

Mohammad S. Yalfani, a Giulio Lolli, * Aurel Wolf, b Leslaw Mleczko, b Thomas E. Müller, a and Walter Leitner c,d

S1. Experimental details for the oxidative carbonylation of phenol with MF

All the reagents and solvents were purchased from commercial suppliers and were used as received. Reagents used in the study

Chemical	Supplier	Purity (%)		
Phenol	Sigma-Aldrich	99		
NaOCH ₃	Fluka	97		
KOCH ₃	Sigma-Aldrich	95		
Methyl formate	Sigma-Aldrich	99		
Tetrabutyl ammonium bromide	Sigma-Aldrich	99		
Benzoquinone	Sigma-Aldrich	98		
$PdBr_2$	Sigma-Aldrich	99		
Mn(acac) ₃	Sigma-Aldrich	Technical grade		
CH ₂ Cl ₂	Sigma-Aldrich	99.8		
Methanol	Carl Roth	99.8		
Molecular Sieves 3Å	Sigma-Aldrich	-		
Pd(OAc) ₂	Sigma-Aldrich	99.9		
Pd on Carbon	Sigma-Aldrich	10		
Pd on Carbon	Sigma-Aldrich	5		
PdCl ₂ (CH ₃ CN) ₂	Sigma-Aldrich	99		
Ce(OAc) ₂	Sigma-Aldrich	99.9		
CuCl ₂	Sigma-Aldrich	99		
Cu(OAc) ₂	Sigma-Aldrich	98		
N,N'-bis(salicylidene)-ethylenediamine	Sigma-Aldrich	98		
Ethanol	Sigma-Aldrich	99		
Methyl Phenyl Carbonate	Alfa Aesar	97		
Lithium methoxide	Sigma-Aldrich	98		
Dimethyl oxalate	Sigma-Aldrich	99		
Phenyl acetate	Sigma-Aldrich	99		

^a CAT Catalytic Center, ITMC, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany,

^b Bayer Technology Services, GmbH, BTS-TD-UP-CC, D-51368,Leverkusen, Germany. Fax: +49-214-30-48420; Tel: +49-214-30-81118; E-mail: Giulio.Lolli@bayer.com

^c Institut für Technische und Makromolekulare Chemie, TechnischeChemie und Petrolchemie, RWTH Aachen University, Worringerweg 1,D-52074 Aachen, Germany

^d Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,D-45470 Mülheim an der Ruhr, Germany

The protocol for the carbonylation of phenol by MF was as follows: a 160 mL Parr autoclave reactor was charged with MF (45 mL), NaOCH₃ (4.68-9.36 mmol), Pd(II) catalyst (0.11 mmol), co-catalyst (0.688mmol), tetrabutyl ammonium bromide (TBAB, 0.55 g, 1.7 mmol), benzoquinone (BQ, 27 mg, 0.25 mmol) and molecular sieves 3Å (MS, 1 g). The reaction mixture was heated to 373 K. After the temperature had stabilized and the internal pressure (P_{in}) became almost constant, the reactor was pressurized with O₂ (7% of P_{in} at 373 K). Immediately thereafter phenol (0.854 g, 9.09 mmol) dissolved in CH₂Cl₂ (10 mL) was injected into the reactor (3.5 mL/min) using a high pressure HPLC pump. The injection of phenol was considered as start of the reaction (t = 0). After 3h the reaction was terminated by cooling the reactor with ice-water. The autoclave was opened and the reaction products were analysed by Gas Chromatography (GC)and Gas Chromatography–Mass Spectrometry (GC-MS).

Synthesis of the Pd(salen) catalyst: PdCl₂(CH₃CN)₂ (85.5 mg, 0.33 mmol) and salen (N,N'-bis(salicylidene)-ethylenediamine, 88.5 mg, 0.33 mmol) were dissolved in ethanol (30 mL). The solution was stirred for 16 h at room temperature (25±2 °C). After 16 h, a yellow precipitate was obtained, which was dried in a partial vacuum.

The method used for GC analysis was as follows:

Instrument: Thermo SCIENTIFIC TRACE GC Ultra, column: OV1-IVA (50 m \times 0.25 mm \times 0.5 μ m); 50-250 °C, 5 min isothermal, 8 °C/min, 30 min isothermal; FID 250 °C; t_{PhOH} : 14.26 min, t_{MPC} : 17.71, t_{DMO} : 10.08 min.

The method used for GC-MS analysis was as follows:

Instrument: VARIAN CP3800 gas chromatograph - VARIAN 1200L Quadrupole MS/MS; column: SE34 ($30m \times 0.32$ mm);50-250 °C, 5 min isothermal, 8 °C/min, 30 min isothermal; FID 250 °C.

The details for the experiments listed in Table 1 of the main text are given in Table S2

Table S1. Carbonylation of phenol by MF using different redox catalysts

No.	Catalyst	Co-catalyst	P _{CO} at 100 °C (bar)	Solvent	Phenol Conversion (mmol)	Phenol Conversion (%)	Amount of MPC (mmol)	Selectivity to MPC (%)
1	PdBr ₂	Mn(acac) ₃	67-69	DCM^a	0.145	1.6	0.137	94.5
10	PdBr ₂	Mn(acac) ₃	67-69	DMF^b	0.127	1.4	0.119	93.6
11	PdBr ₂	Mn(acac) ₃	67-69	THF^c	0.099	1.1	0.093	94.4
2	Pd(OAc) ₂	Mn(acac) ₃	67-69	DCM	0.154	1.7	0.146	95.2
3	Pd(salen) ^c	Mn(acac) ₃	67-69	DCM	0.154	1.7	0.140	91.3
4	Pd(10%)/C	Mn(acac) ₃	67-69	DCM	0.099	1.1	0.093	83.7
5	Pd(5%)/C	Mn(acac) ₃	67-69	DCM	0.154	1.7	0.116	75.4
6	Pd(OAc) ₂	Ce(OAc) ₂	67-69	DCM	0.163	1.8	0.138	85.0
7	PdBr ₂	CuCl ₂	67-69	DCM	0.118	1.3	0.114	97.0
8	Pd(OAc) ₂	Cu(OAc) ₂	67-69	DCM	0.327	3.6	0.189	57.9
9	PdCl ₂ (CH ₃ CN) ₂	Cu(OAc) ₂	67-69	DCM	0.209	2.3	0.124	59.7

 $[^]a\mathrm{Dichloromethane,}\ ^b\mathrm{dimethyl}$ for mamide, $^c\mathrm{tetrahydrofuran}$

S2. Experimental details for the oxidative carbonylation of phenol with CO/CH₃OH

Similar to the reactions with MF, a 160 mL Parr autoclave reactor was charged with MeOH (45 ml), NaOCH₃ (0.253 g, 4.68 mmol), Pd(II) catalyst (0.11 mmol), co-catalyst (Mn(acac)₃, 0.688 mmol), tetrabutyl ammonium bromide (TBAB, 0.55 g, 1.7 mmol), benzoquinone (BQ, 27 mg, 0.25 mmol) and molecular sieves 3Å (1 g). The reaction mixture was heated to 373 K. After the temperature had stabilized, the reactor was pressurized first with CO and then O_2 to the desired pressure (P_{O_2}) was 7% of $P_{(CO)}$). Immediately thereafter, phenol (0.854 g, 9.09 mmol) dissolved in CH₂Cl₂ (10 mL) was injected into the reactor (3.5 mL/min) using a high pressure HPLC pump. The injection of phenol was considered as start of the reaction (t = 0). After 3 h, the reaction was terminated by cooling the reactor with ice-water. The autoclave was opened and the reaction products were analysed by GC and GC-MS.

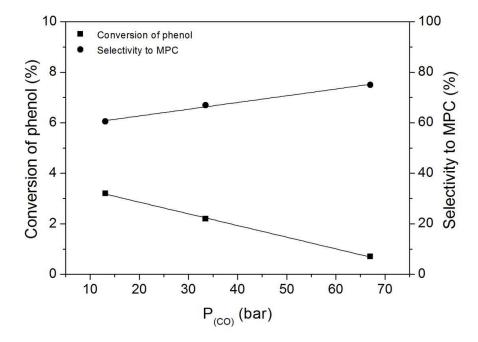


Fig. S1 Oxidative carbonylation of phenol with MF using KOCH₃ as catalyst for the activation of MF.

$$L_{2}Pd \xrightarrow{C} -OCH_{3} \xrightarrow{C} C-C \xrightarrow{C} OCH_{3}$$

$$C \xrightarrow{C} OCH_{3} \xrightarrow{C} OCH_{3}$$

Scheme S1. Proposed structure of the $L_2Pd(COOCH_3)_2$ complex and formation of DMO as by-product in the oxidative carbonylation of phenol with MF

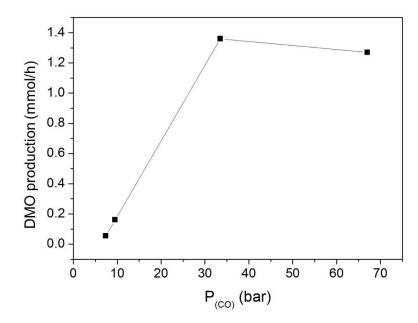


Fig S2 DMO production vs the initial CO pressure during the oxidative carbonylation of phenol with MF