Supporting information

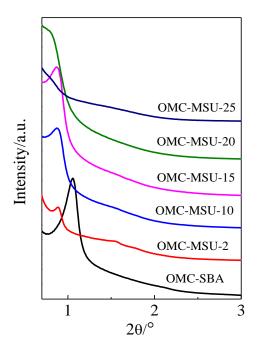
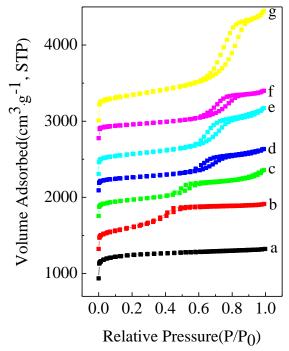
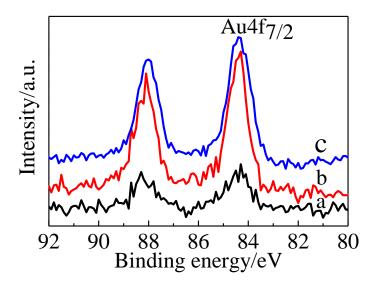
Mesoporous carbon confined gold catalysts with superior activity for selective oxidation of glucose to gluconic acid

Chunyan Ma, Wenjuan Xue, Jinjun Li, Wei Xing* and Zhengping Hao*

[*] E-mails: <u>zpinghao@rcees.ac.cn</u>; <u>xingwei@upc.edu.cn</u>

^a Department of Environmental Nano-materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China

^b School of Science, State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum, Qingdao 266555, P. R. China

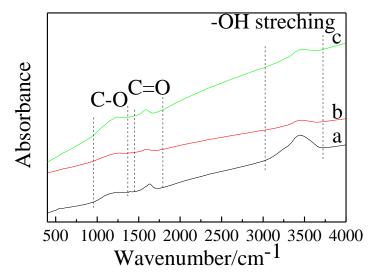

Figure S1 Small angel X-ray diffraction of the OMC supports.

Figure S2 N₂ adsorption/desorption isotherms of the catalysts. (a) Au/AC; (b) Au/OMC-SBA; (c) Au/OMC-MSU-2; (d) Au/OMC-MSU-10; (e) Au/OMC-MSU-15; (f) Au/OMC-MSU-20; (g) Au/OMC-MSU-25. The isotherm curves a, b, c, d, e, f and g in panel are shifted by 917, 1313, 1752, 2088, 2300. 2772 and 3001 cm $^3 \cdot g^{-1}$, STP, respectively, for clarity.

Figure S3 XPS Au 4f spectra obtained for the Au/OMC catalysts. (a) Au/OMC-SBA; (b) Au/OMC-MSU-10; (c) Au/OMC-MSU-15.

Figure S4 IR spectra of the Au/OMC catalysts. (a) Au/OMC-MSU-2; (b) Au/OMC-MSU-20; (c) Au/OMC-MSU-25.

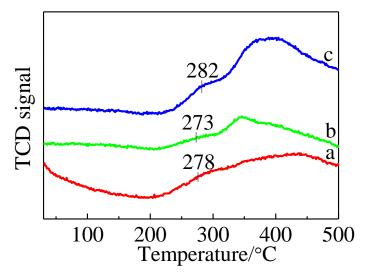
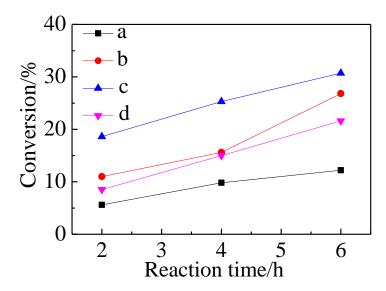



Figure S5 O₂-TPD profiles of the Au/OMC catalysts (a) Au/OMC-MSU-2; (b) Au/OMC-MSU-20; (c) Au/OMC-MSU-25.

Figure S6 Influence of reaction time on the oxidation of glucose using the Au/OMC catalysts. (a) Au/OMC-SBA; (b) Au/OMC-MSU-2; (c) Au/OMC-MSU-10; (d) Au/OMC-MSU-20.