Electronic Supporting Information

Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of Lewis acids

Fei Liu,^a Karine De Oliveira Vigier,^a Marc Pera-Titus,^b Yannick Pouilloux,^a Jean-Marc Clacens,^b Floryan Decampo^b* and François Jérôme^a*

^a Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers/ENSIP, 1, rue Marcel Doré, 86022 Poitiers Cedex, France.

^b Eco-efficient Products and Processes laboratory, UMI 3464 CNRS/Rhodia China. 3966 Jin Du Road, Xin Zhuang Industrial Zone, Shanghai 201108, China

* Corresponding author: <u>francois.jerome@univ-poitiers.fr</u>, <u>floryan.decampo@ap.rhodia.com</u>

List of tested metal triflimidates that were found inefficient in the acid-catalyzed etherification of glycerol with n-butanol:

Li(TFSI), K(TFSI), Ca(TFSI)₂, Cu(TFSI)₂, Zn(TFSI)₂, Y(TFSI)₃, La(TFSI)₃, Ce(TFSI)₃, Ti(TFSI)₄

Catalysis in the presence of basic catalysts:

Conditions: glycerol/n-butanol molar ratio = 4, 150°C, 6.5 mol% of catalyst, 24h

<u>Result</u>: Although glycerol was converted with 50%, 12% and 1% in the presence of NaOH, K_2CO_3 and 1,5,7-Triazabicyclo[4.4.0]dec-5-ene, respectively, *n*-butanol was not converted and only formation glycerol-derived unidentified product was observed.

Mono ethers obtained from 1,3-propanediol:

Mono ethers obtained from tris(hydroxymethyl)ethane:

Mono ethers obtained from isosorbide

3004850,007-------