Supporting On-Line Information

Formation of glycerol carbonate from glycerol and urea catalysed by metal

monoglycerolates

Terence W. Turney^{1,2}*, Antonio Patti¹, Will Gates³, Uzma Shaheen¹ and Sanjitha Kulasegaram¹

1. School of Chemistry, School of Chemistry, Monash University, Clayton, Victoria 3800,

Australia 2. Department of Materials Engineering, 3. Department of Civil Engineering,

Monash University, Clayton, Victoria 3800, Australia.

* Address correspondence to: terry.turney@monash.edu.

			ctivity		Yield		
Cataluct Canu		(%)					
Catalyst Conve	Glyc.				(%)		
(%) (%)	carb.	SP1	SP3	SP4			
				-			
0 26	82	16	0	0	22		
0.1 53	63	37	0	0	34		
0.5 61	76	24	0	0	46		
1.0 79	87	5	2	6	69		
5.0 58	90	4	1	2	52		

Table S1: Effect of catalyst loading on glycerol + urea conversion and yield of glycerol carbonate

Reaction conditions: a 1:1 molar ratio of glycerol to urea with various loadings of ZMG (% wt ZMG w.r.t glycerol) at 140°C/40 mbar over 6 h, monitored and quantified by gas chromatography.

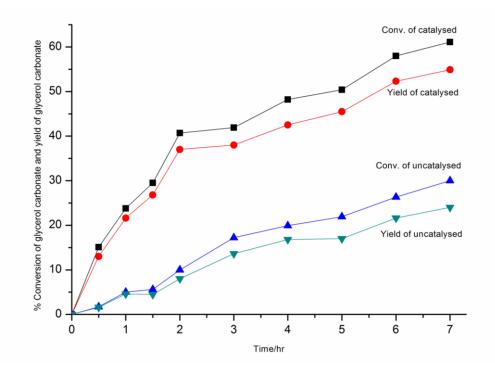
Time	Conversion						
(h)	(%)	Glyc. Carb.	SP1	SP2	SP3	SP4	Yield* (%)
0.5	17	62	38	0	0	0	10
1.5	35	77	23	0	0	0	27
2	45	79	21	0	0	0	36
3	69	86	10	0	2	2	59
4	66	89	7	0	2	2	59
5	72	93	4	0	1	2	67
6	75	91	2	2	1	4	68
7	76	94	1	2	1	2	71

Table S2: ZnO as a catalyst for the formation glycerol carbonate

Reaction conditions: catalyst (ZnO) amount 5% wt with respect to glycerol, time 7h, molar ratio of glycerol:urea = 1:1, pressure 40 mbar, $T = 140^{0}$ C. * Yields determined by gas chromatography.

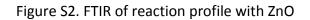
Table S3: Effectiveness of cobalt monoglycerolate as a catalyst in the formation of glycerol	
carbonate	

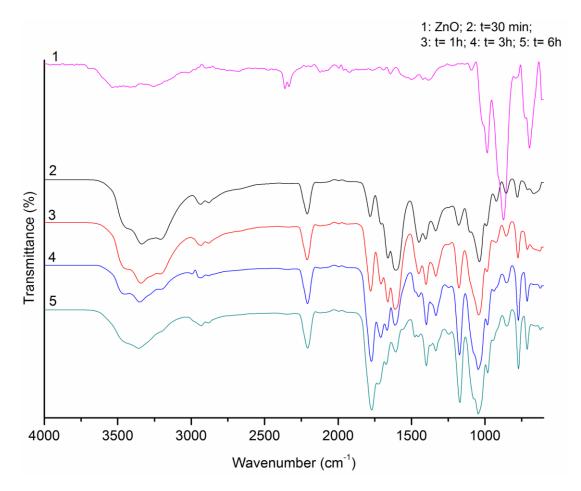
Time	Conversion	Selectivity				
(h)	(%)	Glyc.	SP1	SP3	SP4	Yield Glycerol Carbonate (%)
		carb.				()
2	56	69	27	4	0	39
3	53	71	22	4	3	38
4	58	72	19	4	6	41
5	66	75	14	5	6	50
6	63	82	11	3	4	52


Reaction conditions: Molar ratio of glycerol : urea = 1:1 with 5% wt. CMG at $140^{\circ}C/40$ mbar.

Time	% Conv		Yield of GC		Yield of	Yield of SP1	
h	1 ST	2 nd	1 st	2 nd	1 ST	2 nd	
	Cycle						
3	42	40	39	37	3	4	
4	48	45	43	39	2	2	
5	51	49	46	45	2	1	
6	59	55	55	53	5	4	
ZMG Recovery ²	90%	84%					

Table S4: Re-using ZMG over two reaction cycles in a glycerol/urea mixture¹


1. Reaction Conditions: glycerol : urea = 1 : 1 molar with 5% wt. ZMG at $6h/140^{\circ}C/40$ mbar pressure. 2. Isolated product after MeOH wash of reaction mixture.


Figure S1: Effect of time on glycerol conversion and glycerol carbonate yields in the

catalysed and uncatalysed reaction of glycerol with urea

Reaction conditions: 1:1 molar ratio of glycerol to urea with 5% wt. ZMG in the catalysed reaction, performed at 140° C/40 mbar.

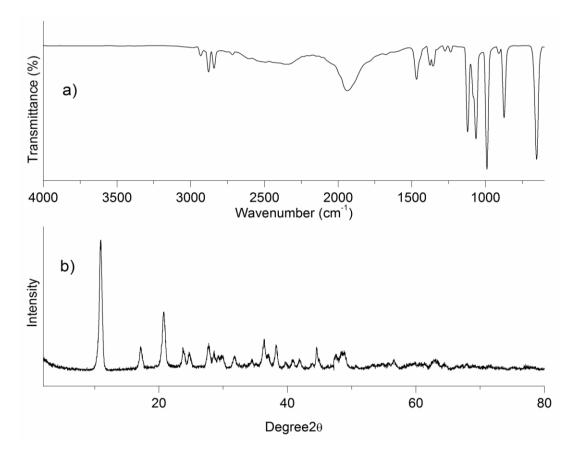


Figure S3. Recovered solid from ZnO reaction after MeOH work-up

a) FTIR spectrum of solid residue and b) powder XRD diffraction pattern of solid, showing the predominant crystalline phase to be ZMG.

Figure S4. Powder XRD of synthesised Zn(NCO)₂(NH₃)₂

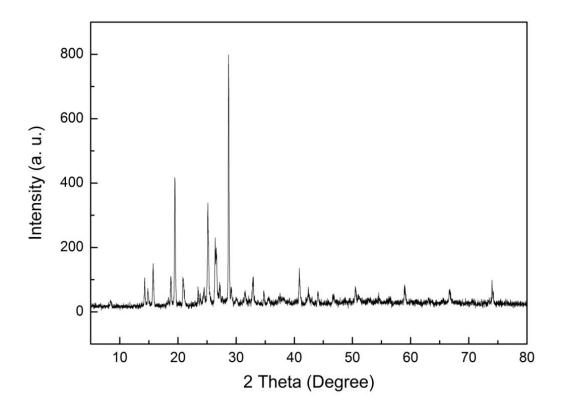
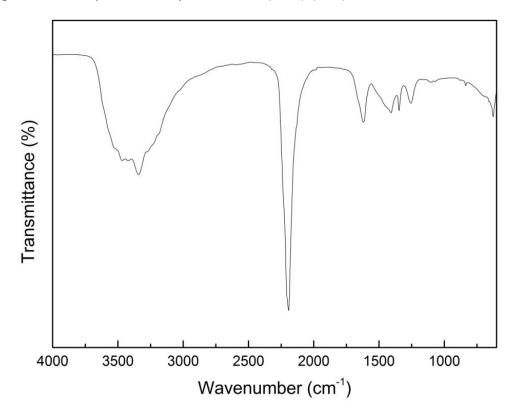



Figure S5. FTIR spectrum of synthesised Zn(NCO)₂(NH₃)₂

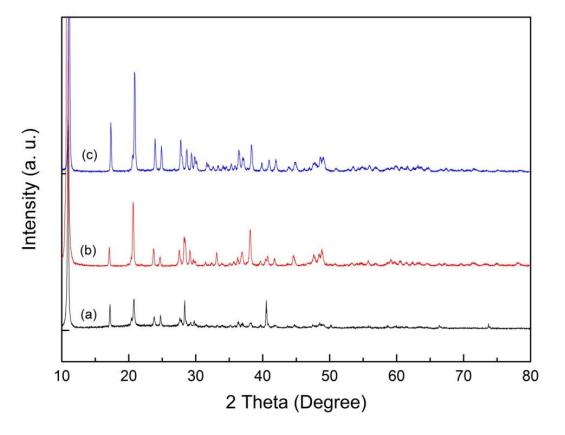
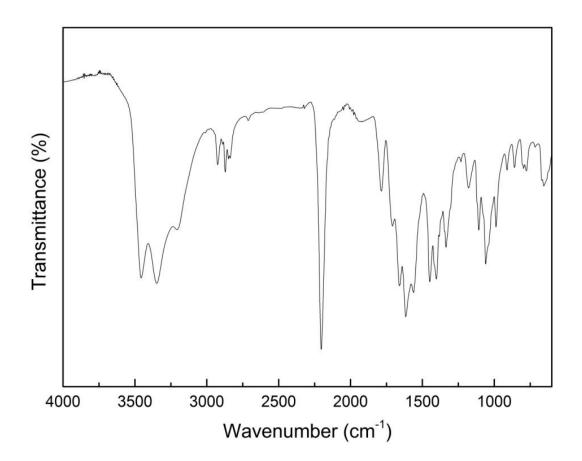



Figure S6. XRD of reaction mixture containing $Zn(NCO)_2(NH_3)_2$ and glycerol (1:1.5 molar eq.)

a) XRD of reaction suspension at 30 min., prior to MeOH work-up. b) XRD of solid at 6 h, after methanol work-up. c) XRD of commercial ZMG.

Figure S7. FTIR of reaction mixture of CMG + urea (1:2 molar ratio) after 1 h heating at 140° C/40 mbar

