SUPPORTING INFORMATION

Deep Eutectic Solvents as Extraction Media for Azeotropic Mixtures

Filipe S. Oliveira,^a Ana B. Pereiro,^a Luís P. N. Rebelo^a and Isabel M. Marrucho^{a,b}*

^{*a*}Instituto de Tecnologia Química e Biológica, www.itqb.unl.pt, Universidade Nova de Lisboa, Apartado 127, 2780-157 Oeiras, Portugal

^bDepartamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal

*Corresponding Author: imarrucho@itqb.unl.pt (Isabel M. Marrucho)

Ternary Liquid-Liquid-Equilibria

Figures S1 and S2 illustrate the ternary diagram for the DES 1 and DES3, respectively.

Figure S1. Ternary diagram for the system Heptane + Ethanol + DES 1 at 25 °C. The blue dots represent the binodal, the red dots the experimental starting point of the mixture and the black dots and lines the system tie-lines.

Figure S2. Ternary diagram for the system Heptane + Ethanol + DES 3 at 25 °C. The blue dots represent the binodal, the red dots the experimental starting point of the mixture and the black dots and lines the system tie-lines.

Distribution Coefficient and Selectivity

The distribution coefficient and selectivity values of the system with the azeotrope heptane (1) + ethanol (2), as a function of ethanol mass fraction in heptane-rich phase at 25 °C, are presented in Figures S3 and S4, respectively.

Figure S3. Distribution coefficient values, β_2 , of the system with the azeotrope heptane (1) + ethanol (2), as a function of ethanol mass fraction in heptane-rich phase at 25 °C.¹⁻⁵

Figure S4. Selectivity, *S*, of the system with the azeotrope heptane (1) + ethanol (2), as a function of ethanol mass fraction in heptane-rich phase at 25 °C.¹⁻⁵

NMR studies

The ¹H spectra of DES 1, DES 2 and DES 3 are depicted in Figures S5, S6 and S7, respectively. All the experiments were carried out on a Bruker AVANCE 400 spectrometer operated at room temperature with 16 scans for ¹H NMR, using oxide deuterium as solvent. The chemical shifts of the spectra are listed in Table S1.

	DES 1	DES 2	DES 3
1	3.98	3.98	3.98
2	3.44	3.44	3.45
3, 4, 5	3.12	3.12	3.13
6, 6'	3.55-3.59	_	3.58
7, 7'	3.70	2.79	3.58
8, 8'	3.44-3.49	2.52	_
10, 10'	_	2.15	_

Table S1. ¹H NMR chemical shifts for the DES used in this work.

Figure S5. ¹H NMR spectrum of DES 1 in deuterium oxide at 25 °C. The structure and numbering of the DES is also depicted.

Figure S6. ¹H NMR spectrum of DES 2 in deuterium oxide at 25 °C. The structure and numbering of the DES is also depicted.

Figure S7. ¹H NMR spectrum of DES 3 in deuterium oxide at 25 °C. The structure and numbering of the DES is also depicted.

Figure S8. ¹H NMR spectrum of recovered DES 3 (after evaporation of heptane and ethanol) in deuterium oxide at 25 °C. The structure and numbering of the DES is also depicted.

References

- A. B Pereiro and A. Rodríguez, *Ind. Eng. Chem. Res.*, 2009, **48**, 1579–1585.
 A. B. Pereiro, F. J. Deive, J. M. S. S. Esperança and A. Rodríguez, *Fluid Phase Equilib.*, 2010, **294**, 49–53.
 A. B Pereiro and A. Rodríguez, *Fluid Phase Equilib.*, 2008, **270**, 23–29.
 A. B Pereiro and A. Rodríguez, *Sep. Purif. Technol.*, 2008, **62**, 733–738.
 R. G. Seoane, E. J. González and B. González, *J. Chem. Thermodyn.*, 2012, **53**, 152–157.