Total synthesis of high loading capacity PEG-based supports. Evaluation and improvement of the process by use of ultrafiltration and PEG as solvent.

Raphaël Turgis, a Isabelle Billault, a Samir Acherar, Jacques Augé, b Marie-Christine Scherrmann, a

Supporting information

page **Examples of calculations** - One step transformation without recycling: preparation of 1 2 - One step transformation with solvent recycling: preparation of **19** 3 - Multi-step transformation: Preparation of 15 4 Spectra - Bis propargylated PEG₆₀₀₀ (1) ¹H NMR 8 13C NMR 8 MALDI TOF 9 - Pentaerythritol triallyl ether 6 ¹H NMR 9 ¹³C NMR 10 - Compound 9 ¹H NMR 10 ¹³C NMR 11 - Compound 10 ¹H NMR 11 13C NMR 12 - Compound 11 ¹H NMR 12 13C NMR 13 - Compound 12 ¹H NMR 13 ¹³C NMR 14 - $PEG_{\rm 6000}$ with 6 allyl functions (13) ¹H NMR 14 ¹³C NMR 15 MALDI TOF 15 - PEG₆₀₀₀ with 6 alcohol functions (15) ¹H NMR 16 13C NMR 16 MALDI TOF 17 - Compound 17 ¹H NMR 17 13C NMR 18 - Compound 18 ¹H NMR 18 13C NMR 19 - Compound 19 ¹H NMR 19 13C NMR 20 - Compound 20 ¹H NMR 20 ¹³C NMR 21 - Compound 21 ¹H NMR 21 13C NMR 22 - PEG_{6000} with 18 allyl functions (22) ¹H NMR 22 13C NMR 23 MALDI TOF 23 - PEG_{6000} with 18 alcohol functions (23) ¹H NMR 24 ¹³C NMR 24 MALDI TOF 25

^a Université Paris Sud, ICMMO, UMR CNRS 8182, Bâtiment 410, 91405 Orsay, France; E-mail: marie-christine.scherrmann@u-psud.fr
^b Université de Cergy-Pontoise, SOSCO, 5 mail Gay-Lussac, Neuville sur Oise, 95031 Cergy-Pontoise, France; E-mail: Jacques.auge@u-cergy.fr

Examples of calculations

The determination of the green metrics can be done in a very easy way considering the mass of all the reagents and auxiliaries used in the reaction. Alternatively, we also show here how they can be calculated using the general formalism we developed.¹

The results are presented here in tables, we generally used a spreadsheet application (Excel) to perform the calculations.

- One step transformation without recycling: Preparation of 1

 $AE = M_1/[M_{PEG} + 2M_{NaOH} + 2M_{BrPr}] = 0.962798251$

-Reaction

compound	M	volume	density	mass g	mol
		mL			
PEG ₆₀₀₀	6185			40	0.006467259
THF		30	0.8892	26.676	
NaOH	40			5.34	0.1335
H ₂ O		11		11	
BrPr 80%w in toluene	118.96	4.3	1.335	4.5924	0.038604573

stoichiometric ratio between NaOH and PEG	φ ₁ =mol _{NaOH} /2/mol _{PEG}	10.32121875
ratio between the mass of the excess of NaOH and the mass of the reactants in a stoichiometric amount	$b_1 = (\phi_1 - 1) * 2M_{NaOH} / [M_{PEG} + 2M_{NaOH} + 2M_{BrPr}]$	0.114671178
stoichiometric ratio between BrPr and PEG	φ_2 = mol _{BrPr} /2/mol _{PEG}	2.984616047
ratio between the mass of the excess of BrPr and the mass of the reactants in a stoichiometric amount	$b_2 = (\phi_2 - 1) * 2M_{BrPr} / [M_{PEG} + 2M_{NaOH} + 2M_{BrPr}]$	0.072610435

- Workup

by extraction/precipitation

	M	volume mL	density	mass g	Yield
CH ₂ Cl ₂		200	1,3	260	
aq. KH ₂ PO ₄		80	1.1527	92.216	
H ₂ O		40	1	40	
Na ₂ SO ₄				10	
Et ₂ O (precipitation)		450	0.7134	321.03	
Et ₂ O (washing)		200	0.7134	142.68	
product 1 (C ₂₈₆ H ₅₆₆ O ₁₄₁)	6261			39	0.96316483

Mass of reactants	$= m_{PEG} + m_{NaOH} + m_{BrPr}$	49.9324
Mass of auxiliaries	$= m_{THF} + m_{H2O} + m_{CH2Cl2} + m_{aq. KH2PO4} + m_{H2O} + m_{aq. Na2SO4} + m_{Et2O} + m_{toluene}$	904.750

¹ J. Augé, Green Chem., 2008, **10**, 225-231; J. Augé and M.-C. Scherrmann New J. Chem., 2012, **36**, 1091-1098.

Reaction mass efficiency	$RME = \frac{mass \ of \ product}{mass \ of \ reactants}$ $RME = \frac{\varepsilon \ AE}{1 + b_1 + b_2}$	0.781055988
Global mass efficiency	$GME = \frac{mass \ of \ product}{mass \ of \ react. + mass \ of \ auxiliaries}$	0.040851278
E	$E = \frac{mass of waste}{mass of product}$	23.47903

by ultrafiltration

	M	volume mL	density	mass g	Yield
H ₂ O Ultrafiltration 1		160	1,3	160	
H ₂ O Ultrafiltration 2		120	1	120	
H ₂ O Ultrafiltration 3		120	1	120	
product 1 (C ₂₈₆ H ₅₆₆ O ₁₄₁)	6261			38.5	0.950816563

Mass of reactants	$= m_{PEG} + m_{NaOH} + m_{BrPr}$	49.9324
Mass of auxiliaries	$= m_{THF} + m_{H2O} + m_{H2O (UF)} + m_{toluene}$	438.8241
Mass of auxiliaries	= m _{THF} + m _{H2O} + m _{toluene}	38.8241
(without H_2O used in		
the workup)		

Reaction mass efficiency	$RME = \frac{mass \ of \ product}{mass \ of \ reactants}$ $RME = \frac{\varepsilon \ AE}{1 + b_1 + b_2}$	0.771042449
Global mass efficiency	$GME = \frac{mass\ of\ product}{mass\ of\ react. + mass\ of\ auxiliaries}$	0.0787713
E	$E = \frac{mass of waste}{mass of product}$	11.6949
E^* (without H_2O used in the workup)	$E^* = \frac{mass of waste(without water)}{mass of product}$	1.305363

- One step transformation with solvent recycling: Preparation of 19

$AE = M_{19}/[M_{18}+M_{NaN3}] = 0.931891148$

Reaction

compound	M	volume mL	density	mass g	mol
18	1445.66			20	0.013834512
PEG ₄₀₀		16	1.128	18.048	
NaN ₃	65.01			0.99	0.015228426

stoichiometric ratio between NaN ₃ and 18	φ=mol _{NaN3} /mol ₁₈	1.100756345
ratio between the mass of the excess of NaN ₃ and the mass of the reactants in a stoichiometric amount	$b = (\phi-1)^* M_{NaN3}/[M_{18} + M_{NaN3}]$	0.004335937

Workup

	M	volume mL	density	mass g	yield
Et ₂ O		40	0.7134	28.536	
H ₂ O		20	1	20	
Na ₂ SO ₄				5	
product 19 (C ₇₂ H ₁₁₈ N ₁₂ O ₁₆)	1407.78			19.1	0.980696771

Mass of reactants	$= m_{18} + m_{NaN3}$	20.99
Mass of auxiliaries	$= m_{PEG400} + m_{Et2O} + m_{H2O} + m_{Na2SO4}$	71.584
Mass of auxiliaries (1 recycling of PEG)	$= m_{PEG400}/2 + m_{Et2O} + m_{H2O} + m_{Na2SO4}$	62.56
Mass of auxiliaries (2 recycling of PEG)	$= m_{PEG400}/3 + m_{Et2O} + m_{H2O} + m_{Na2SO4}$	59.552
Mass of auxiliaries (3 recycling of PEG)	$= m_{PEG400}/4 + m_{Et2O} + m_{H2O} + m_{Na2SO4}$	58.048

Reaction mass efficiency	$RME = \frac{mass \ of \ product}{mass \ of \ reactants}$ $RME = \frac{\varepsilon \ AE}{1+b}$	0.909957122	
Global mass efficiency	$GME = \frac{mass\ of\ product}{mass\ of\ react. + mass\ of\ auxiliaries}$	0.206321429 (1st use of PEG ₄₀₀) 0.228605625 (2nd use of PEG ₄₀₀) 0.237143354 (3rd use of PEG ₄₀₀) 0.241655912 (4th use of PEG ₄₀₀)	
E	$E = \frac{mass of waste}{mass of product}$	3.846806283 (1st use of PEG ₄₀₀) 3.37434555 (2nd use of PEG ₄₀₀) 3.216858639 (3rd use of PEG ₄₀₀) 3.138115183 (4th use of PEG ₄₀₀)	

- Multi-step transformation: Preparation of 15

For a linear multi-step synthesis, the calculation of GME can be easy but for a multi-sequence convergent synthesis, the problem is more difficult and a general formalism allows for the calculation. The calculation of GRME (global reaction mass efficiency) of **15** is detailed below.

$$2 (3) + 6 (AllBr) + 6 (NaOH) \xrightarrow{\epsilon_{2,1}} 2 (6)$$

$$\epsilon_{2,2} + 2 (Br(CH_2)_4Br) + 2 (NaOH)$$

$$2 (9)$$

$$\epsilon_{2,3} + 2 (NaN_3)$$

$$2 (12)$$

$$\xrightarrow{\epsilon_{1,2}} (13)$$

$$(PEG) + 2 (BrPr) + 2 (NaOH) \xrightarrow{\epsilon_{1,1}} (1) \xrightarrow{\epsilon_{1,3}} + 6 (HS(CH_2)_2OH)$$

$$(15)$$

Compound	M	coef.	coef*M
3	136.16	2	272.32
AllBr	120.98	6	725.88
NaOH	40	6	240
dibromobutane	215.91	2	431.82
NaOH	40	2	80
NaN ₃	65.01	2	130.02
PEG ₆₀₀₀	6185	1	6185
BrPr	118.96	2	237.92
NaOH	40	2	80
mercaptoethanol	78.133	6	468.798

The global atom economy is:

$$GAE = \frac{v_p M_P}{\sum M}$$

were P refers to the product 15 and

$$\begin{split} & \sum M = v_{a_1} M_{A_1} + v_{a_2} M_{A_2} + \sum_{i=1}^{z} v_{b1,i} M_{B1,i} + \sum_{j=1}^{m} v_{b2,j} M_{B2,j} \\ & \Sigma M = M_{\text{PEG}} + 2 \, M_3 + 2 \, M_{\text{BrPr}} + 2 \, M_{\text{NaOH}} + 6 \, M_{\text{SH(CH2)2OH}} + 6 M_{\text{AllBr}} + 6 M_{\text{NaOH}} + 2 \, M_{\text{Br(CH2)4Br}} + 2 \, M_{\text{NaOH}} + 2 M_{\text{NaN3}} \\ & \text{GAE} = M_{15} \, / \, \Sigma M = 7437/8851.758 = 0.840172088 \end{split}$$

There are 2 branches in the synthesis of **15**, and therefore two possibilities to carry out the calculation: Either considering the main branch starting from PEG (black branch) or by considering that the reference compound is pentaerythritol **3** (blue branch). As we have demonstrated, the final result is exactly the same. We chose here to consider that the black branch is the main branch.

Total yield from PEG (black branch): $\Pi\epsilon_{(PEG)} = \epsilon_{1,1}\epsilon_{1,2}\epsilon_{1,3} = 0.845246869$

Total yield from pentaeryhritol 3 (blue branch):

For this calculation, we have to considerate the stoichiometric ratio between 12 and 1:

 $\phi_{1,2} = mol_{12}/mol_{1}/2 = 1.139607295$

 $\Pi\epsilon_{(\mathbf{3})} = \epsilon_{2,1}\epsilon_{2,2}\epsilon_{2,3}(\epsilon_{1,2}/\phi)\epsilon_{1,3} = 0.418203894$

number of moles of the reference molecule = mol of PEG	x ₁ =	0.006467259
number of moles of 3 necessary to give 15 from x ₁ mol of PEG	$x_2=2x_1\Pi \ \epsilon_{(PEG)}/\Pi \ \epsilon_{(3)}$	0.02614242
3/PEG (scale ratio)	$\sigma_2 = x_2/2x_1 = \Pi \ \epsilon_{(PEG)}/\Pi \ \epsilon_{(3)}$	2.021135818
ratio between the mass of the excess of 3 and the mass of all the reactants	$a_2=(\sigma_2-1)2M_3/\Sigma M$	0.031414743
in the ideal case*, for the total synthesis with respect to PEG		

^{*} Ideal case: All the yields (not necessary the last one) are 100% and all the reactions are carried out in the stoichiometric amount.

For the main branch (branch 1 in black): there are 3 steps, involving 2 reagents (step 1), no reagents (step 2) and 1 reagent (step 3). Hence, we have to calculate the ratios between the mass of the excess of every reactant and the mass of all the reactants used in the total synthesis, with respect to PEG. These ratios are $b_{1,1}$ (branch 1, step 1, reactant 1), $b_{1,1}$ * (branch 1, step 1, reactant 2), $b_{1,3}$ (branch 1, step 3, reactant 1). They are calculated using the formula given below.

$$b_{l,i} = \left[\varphi_{1,i} \left(\varepsilon_{1,1} \, \varepsilon_{1,2} ... \varepsilon_{1,i-1}\right) - 1\right] \frac{v_{b1,i} \, M_{B1,i}}{\sum M}$$

$$\varphi_{l,i} = \frac{mol\,number\ of\ B_{l,i}\ / \nu_{l,i}}{mol\,number\ of\ P_{l,i-1}\ / \nu_{pl,i-1}}$$

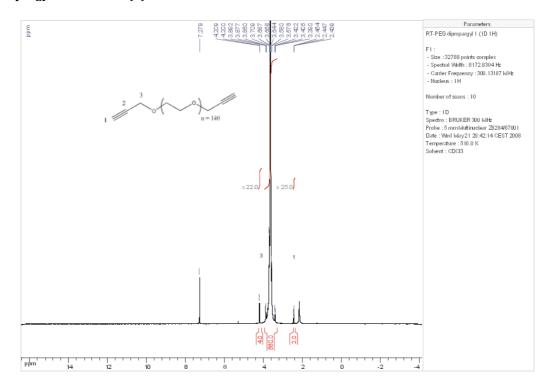
Branch 1 step 1	PEG+ 2 NaOH + 2 BrPr→1		yield = $\varepsilon_{1,1}$ = 0.950816563 (purification by UF)
stoichiome PEG	tric ratio between NaOH and	$\varphi_{1,1} = \text{mol}_{\text{NaOH}}/2/\text{mol}_{\text{PEG}}$	10.32121875
ratio between the mass of the excess of NaOH and the mass of the reactants in the ideal case, for the total synthesis with respect to PEG		$b_{11}=(\varphi_{1,1}-1)2M_{NaOH}/\Sigma M$	0.08424287
stoichiometric ratio between BrPr and PEG		$\varphi_{1,1^*} = mol_{BrPr}/2/mol_{PEG}$	2.984616047
ratio between the mass of the excess of BrPr and the mass of the reactants in the ideal case, for the total synthesis with respect to PEG		$b_{1,1*}=(\varphi_{1,1*}-1)2M_{BrPr}/\Sigma M$	0.053343059

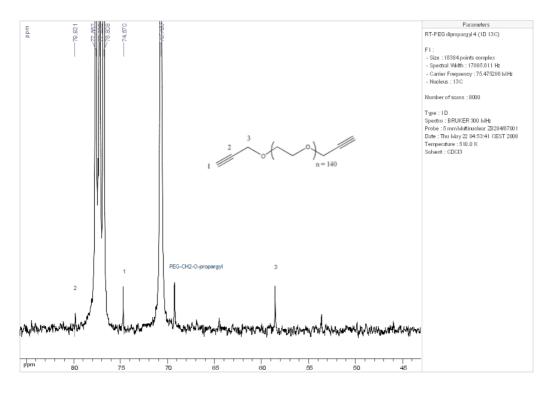
Branch 1 step 2	$2 (12) + (1) \rightarrow (13)$ no reagent is added: $b_{1,2} = 0$		yield = ε _{1,2} = 0.948803923
Branch 1 step 3	(13) + 6 (HS(CH ₂) ₂ OH) → (15)		yield = $\varepsilon_{1,3}$ = 0.936936937
stoichiometric ratio between HS(CH ₂) ₂ OH and 13		$\varphi_{1,3} = \text{mol}_{\text{HS(CH2)2OH}} / 6 / \text{mol}_{10}$	4.6164421
ratio between the mass of the excess of HS(CH ₂) ₂ OH and the mass of the reactants in the ideal case, for the total synthesis with respect to PEG		$b_{1,3} = (\varphi_{1,3}\varepsilon_{1,2}\varepsilon_{1,1}-1)6M_{HS(CH2)20H}/\Sigma M$	0.167604108

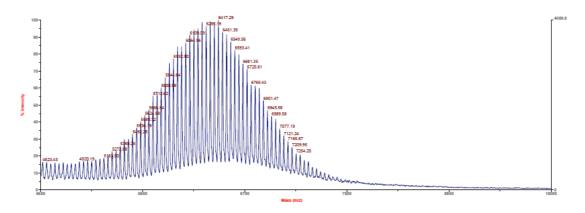
For the second branch (branch 2 in blue): there are 3 steps, involving 2 reagents (step 1 and step 2) and 1 reagent (step 3). Hence, we have to calculate the ratios between the mass of the excess of every reactant and the mass of all the reactants used in the total synthesis, with respect to PEG, in the ideal case; ie, all the yields (not necessary the last one) are 100% and all the reactions are carried out in the stoichiometric amount. These ratios are $b_{2,1}$ (branch 2, step 1, reactant 1), $b_{2,1*}$ (branch 2, step 1, reactant 2), $b_{2,2}$ (branch 2, step 2, reactant 1), $b_{2,2*}$ (branch 2, step 3, reactant 1). They are calculated using the formula given below.

reactant 2) and
$$b_{2,j}$$
 (branch 2, step 3, reactant 1). They are calculated using the formula given below.
$$b_{2,j} = \left[\sigma_2 \varphi_{2,j} \left(\varepsilon_{2,1} \varepsilon_{2,j-1}\right) - 1\right] \frac{v_{b2,j} M_{B2,j}}{\sum M} \qquad \qquad \varphi_{2,j} = \frac{mol \ number \ of \ B_{2,j} \ / v_{b2,j}}{mol \ number \ of \ P_{2,j-1} \ / v_{P2,j-1}}$$

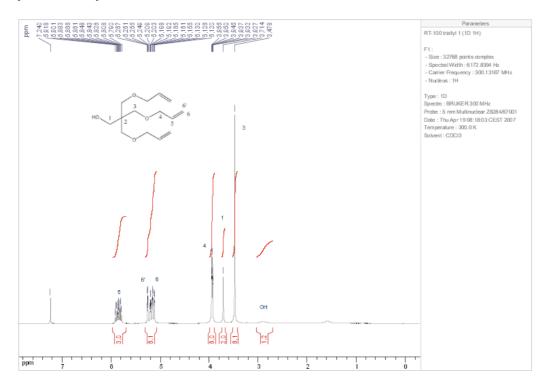
Branch 2			yield = $\varepsilon_{2,1}$ =
step 1	7 + NaOH + AllBr →6		0.747438763
			(2 steps)
stoichiome	tric ratio between NaOH and 3	$\varphi_{2,1} = \text{mol}_{\text{NaOH}}/3/\text{mol}_3$	1.505573179
NaOH and the mass of	the mass of the excess of the mass of the reactants, and f the reactants in the ideal case, al synthesis with respect to PEG	$b_{2,1}=(\sigma_2\phi_{2,1}-1)6M_{NaOH}/\Sigma M$	0.055391516
stoichiome	tric ratio between AllBr and 3	$\varphi_{2,1^*} = \text{mol}_{AllBr}/3/\text{mol}_3$	1.503536293
AllBr and the mass of	the mass of the excess of the mass of the reactants, and f the reactants in the ideal case, ll synthesis with respect to PEG	$b_{2,1^*} = (\sigma_2 \varphi_{2,1^*} - 1) 6 M_{AllBr} / \Sigma M$	0.167194043
Branch 2 step 2	6 + Br(CF	I ₂) ₄ Br + NaOH →7	yield = ε _{2,2} = 0.728932412 (method in water with recovery of dibromobutane)
stoichiome	tric ratio between NaOH and 6	φ _{2,2} = mol NaOH/mol ₄	9.859230769
NaOH and the mass of	the mass of the excess of the mass of the reactants, and f the reactants in the ideal case, all synthesis with respect to PEG	$b_{2,2} = (\sigma_2 \varphi_{2,2} \varepsilon_{2,1} - 1) 2 M_{\text{NaOH}} / \Sigma M$	0.125571404
	tric ratio between Br(CH ₂) ₄ Br	φ _{2,2*} = mol _{Br(CH2)4Br} /mol ₆	1.250574159
Br(CH ₂) ₄ B		$b_{2,2^*} = (\sigma_2 \varphi_{2,2^*} \varepsilon_{2,1} - 1) 2 M_{Br(CH2)4Br} / \Sigma M$	0.043378873
Branch 2 step 3	9+	$NaN_3 \rightarrow 12$	yield = $\epsilon_{2,3}$ = 0.983996563 (method in PEG ₄₀₀)
stoichiome	tric ratio between NaN ₃ and 9	$\varphi_{2,3} = \text{mol } \text{NaN3/mol6}$	1.098593293
NaN ₃ and	the mass of the excess of the mass of the reactants in the for the total synthesis with PEG	$b_{2,3}$ =(σ ₂ φ _{2,3} ε _{2,1} ε _{2,2} -1)2M _{NaN3} /Σ <i>M</i>	0.003080923

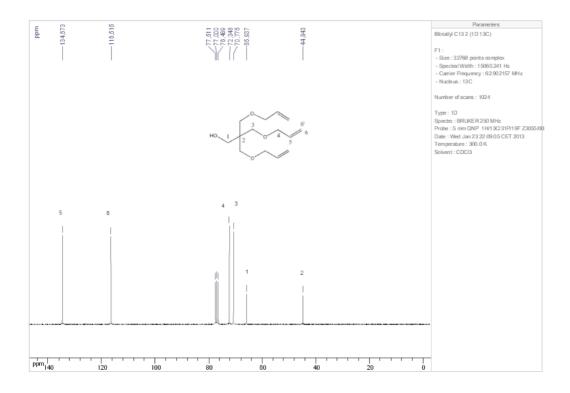

The general expression of GRME is:

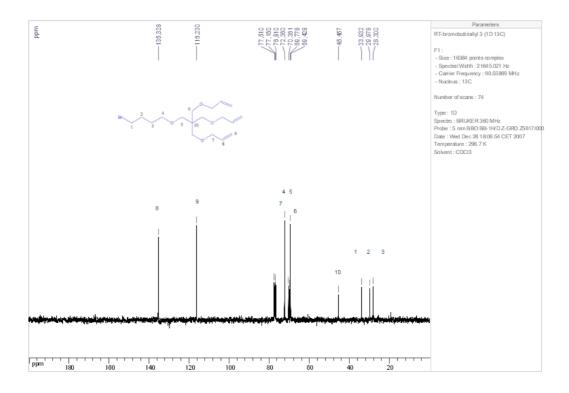

$$GRME = \frac{GAE \prod_{i=1}^{z} \varepsilon_{1,i}}{1 + a_2 + \sum_{i=1}^{z} b_{1,i} + \sum_{j=1}^{m} b_{2,j}}$$
Applied to the synthesis of **15** it becomes:

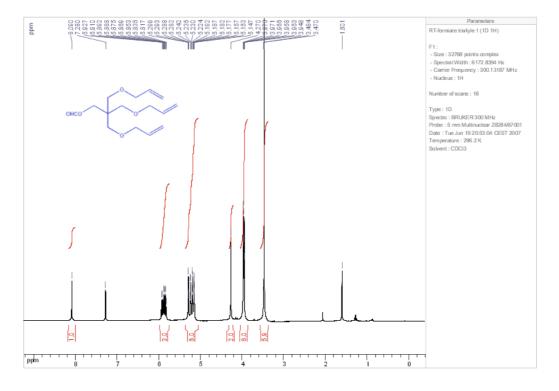

Applied to the synthesis of **15** it becomes:
$$GRME = \frac{GAE \prod_{i=1}^{3} \varepsilon_{1,i}}{1 + a_2 + \sum_{i=1}^{3} b_{1,i} + \sum_{j=1}^{3} b_{2,j}} = \frac{GAE \varepsilon_{1,1} \varepsilon_{1,2} \varepsilon_{1,3}}{1 + a_2 + (b_{1,1} + b_{1,1*} + b_{1,2} + b_{1,3}) + (b_{2,1} + b_{2,1*} + b_{2,2*} + b_{2,3})}$$

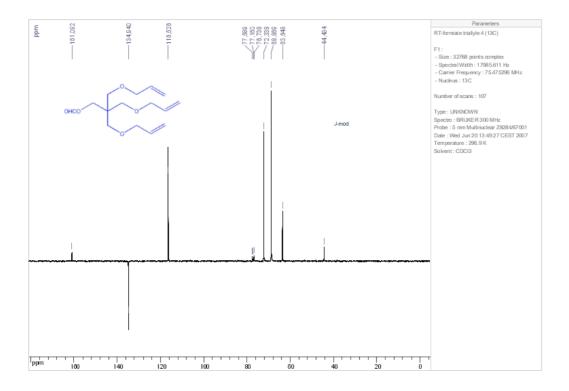
$$GRME = 0.41020332$$

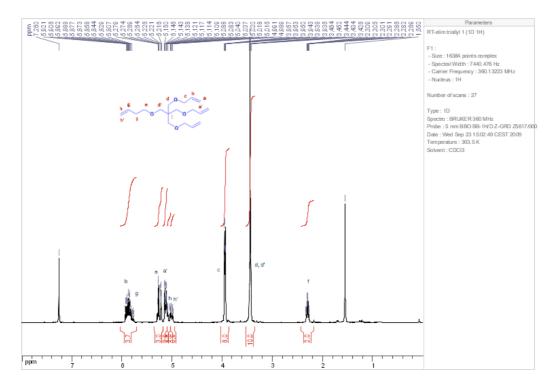

Bis propargylated PEG₆₀₀₀ (1)

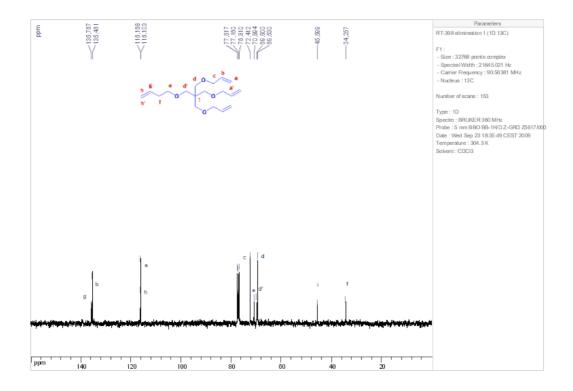


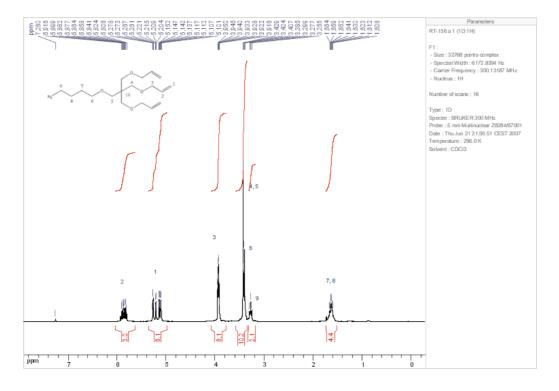


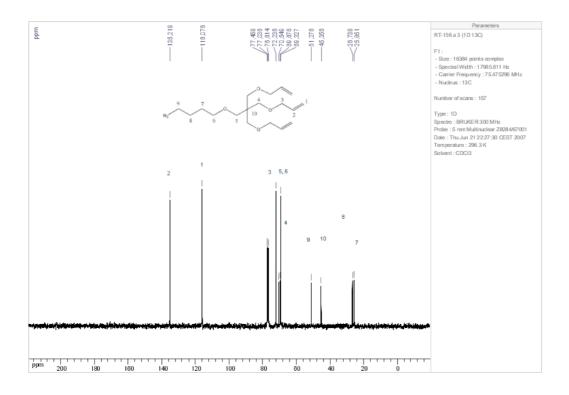

Pentaerythritol triallyl ether 6

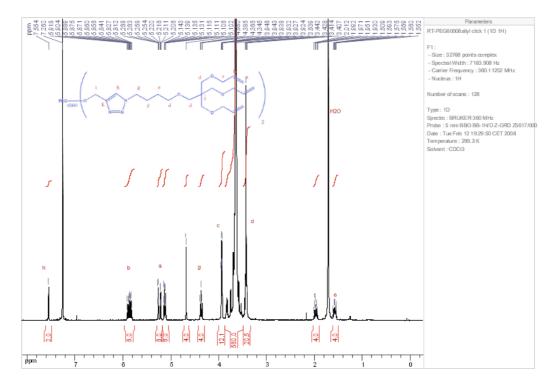


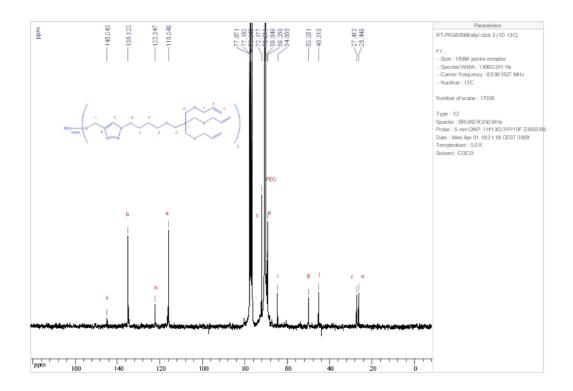


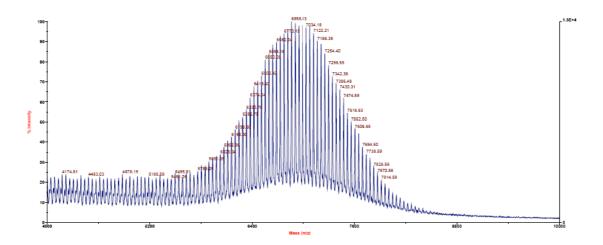


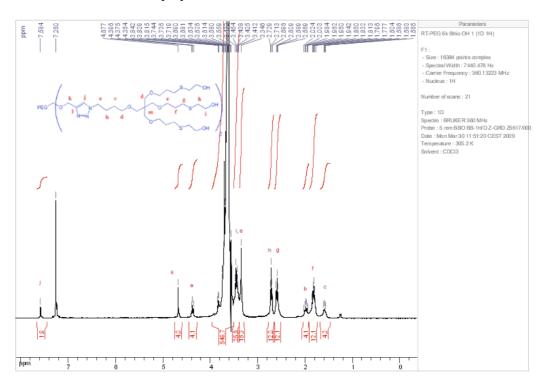


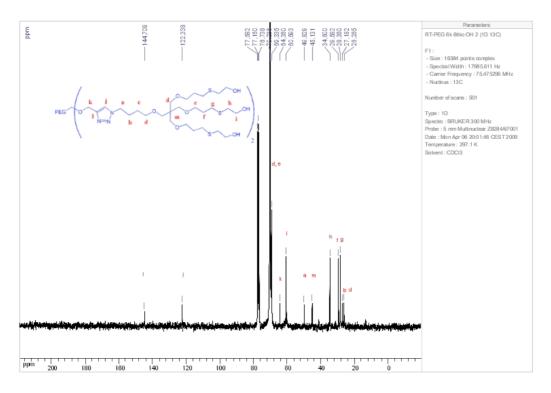


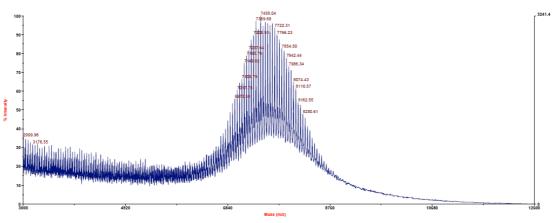


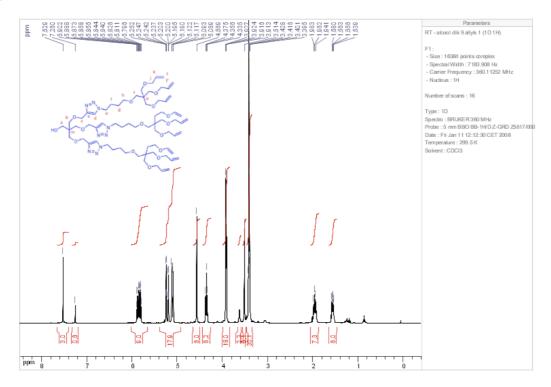


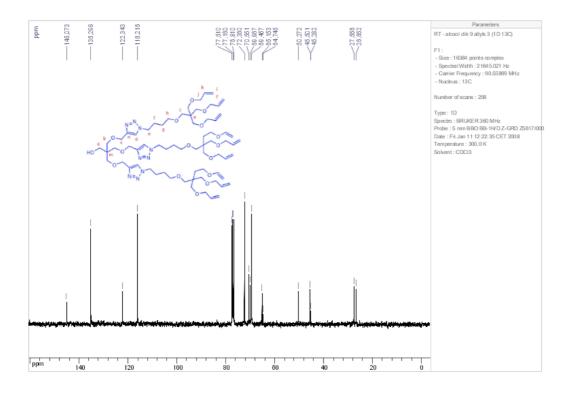


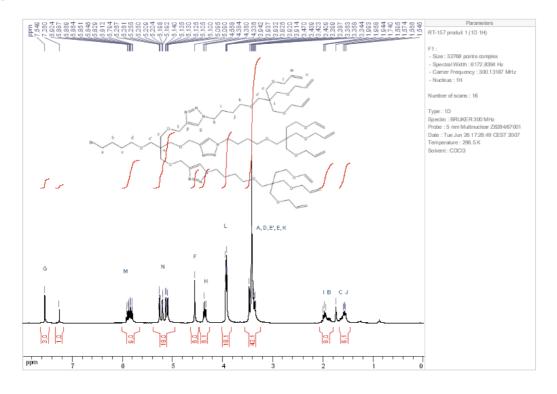

PEG₆₀₀₀ with 6 allyl functions (13)

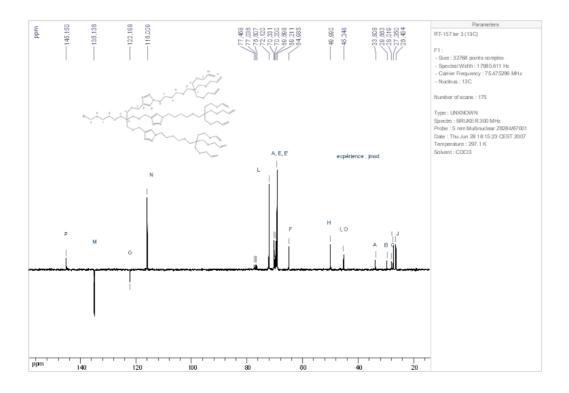


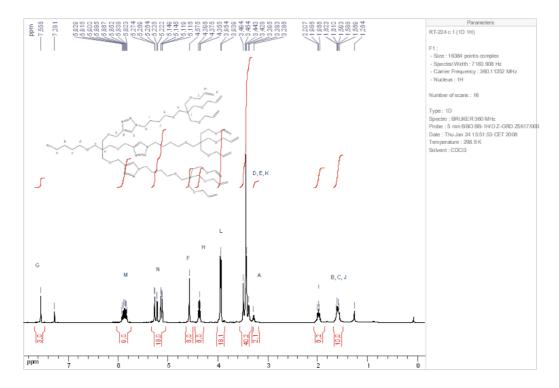


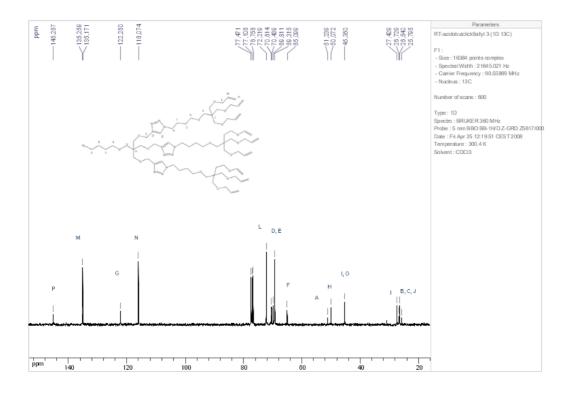


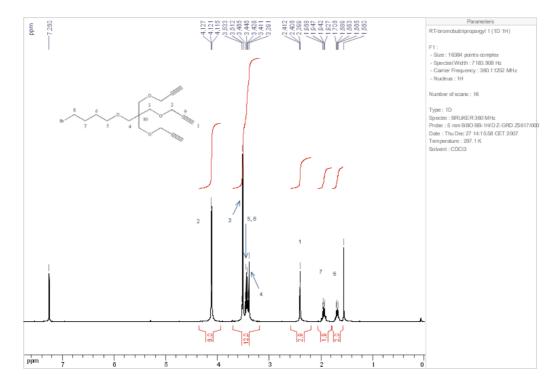

PEG₆₀₀₀ with 6 alcohol functions (15)

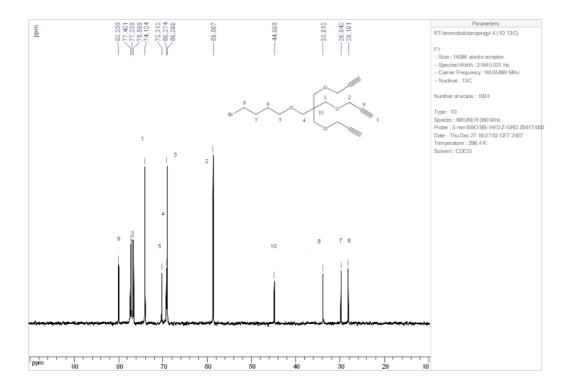


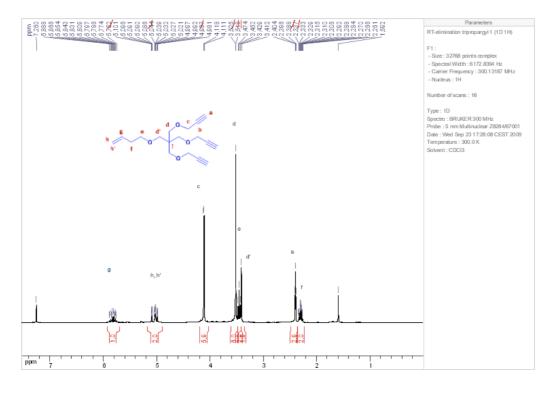


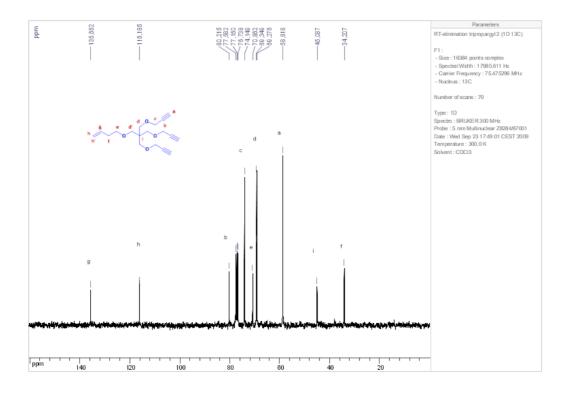


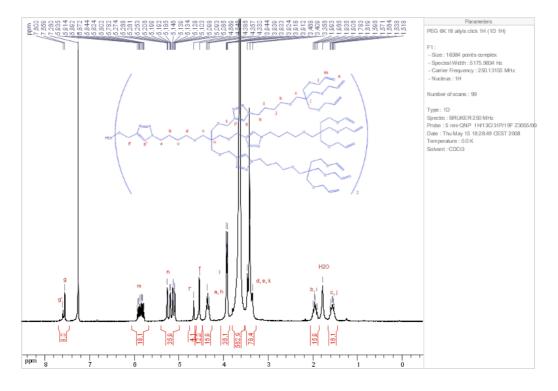


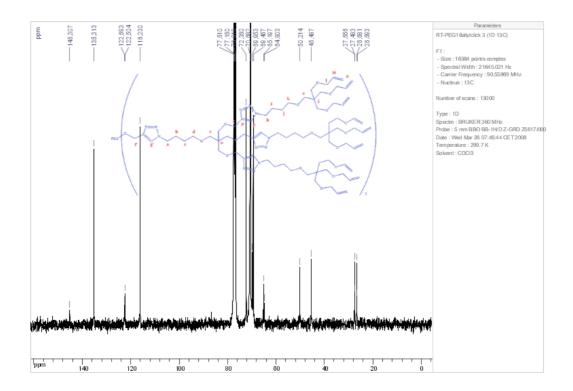


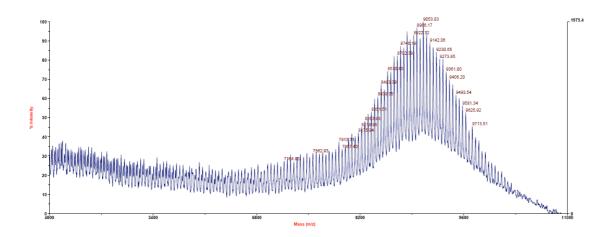


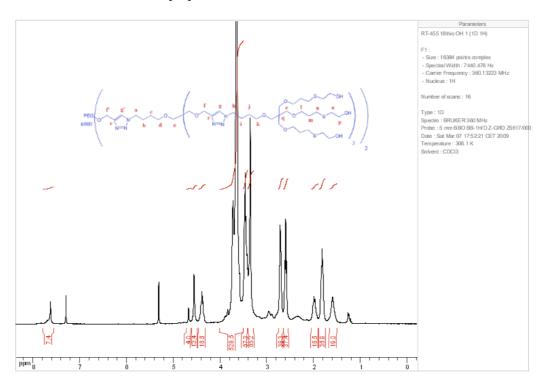


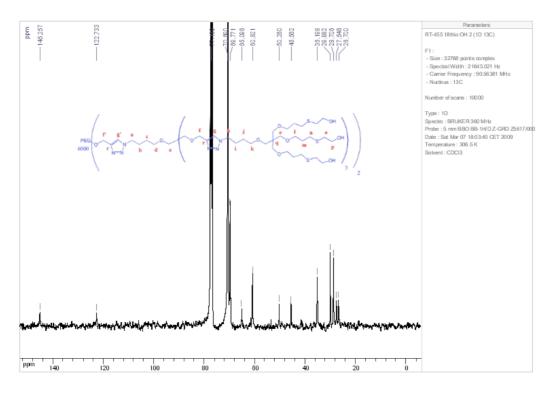


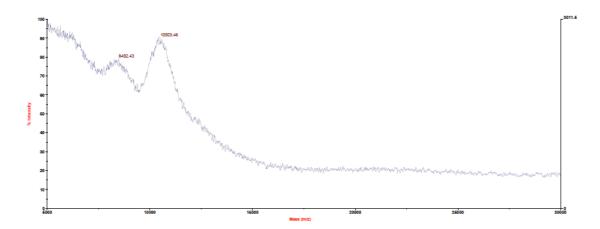







PEG₆₀₀₀ with 18 allyl functions (22)





PEG₆₀₀₀ with 18 alcohol functions (23)

