Supporting Information for

# **Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts**

Yanliang Yang,<sup>ab</sup> Zhongtian Du,<sup>a</sup> Yizheng Huang,<sup>a</sup> Fang Lu,<sup>a</sup> Feng Wang,<sup>a</sup> Jin Gao<sup>a</sup> and Jie Xu<sup>\*a</sup> <sup>a</sup>Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China <sup>b</sup>University of Chinese Academy of Sciences, Beijing 100039, China E-mail: xujie@dicp.ac.cn

# **Contents:**

- 1. Characterization of Catalysts (pp.2-5)
- 2. Isolation of Key Intermediates (p.6)
- 3. Optimization of Reaction Conditions (pp.7 and 8)
- 4. Control Experiments (pp.9 and 10)
- 5. Preparation of Cycloalkanes (pp.11-13)
- 6. NMR, MS and GC Traces (pp.14-31)

# 1. Characterization of Catalysts

 $N_2$  physical adsorption/desorption measurement was carried out at liquid nitrogen temperature on an Autosorb-1 Quantachrome instrument. Samples were pre-degassed at 300 °C for about 10 h to remove water and other physically adsorbed species. The BET surface area (S<sub>BET</sub>) was calculated using the Brunauer-Emmett-Teller equation (relative pressure between 0.05 and 0.25). The pore size and pore volume were calculated from the desorption branches of the nitrogen isotherms employing the Barrett-Joyner-Halenda (BJH) model.

Temperature programmed reduction (TPR) profiles were obtained on a Micromeritics AutoChem II 2920 Instrument with a thermal conductivity detector (TCD). Typically, 50 mg sample of the calcinated catalyst was degassed at 200 °C in an atmosphere of Ar for 2 h. After the sample was cooled to a temperature of 50 °C under Ar flow, the in-line gas was switched to 10% H<sub>2</sub>/Ar, and the sample was heated to 800 °C at a rate of 10 °C min<sup>-1</sup>. The H<sub>2</sub> consumption was monitored by a TCD detector.

The X-ray powder diffraction (XRD) patterns were obtained using Rigaku D/Max 2500/PC powder diffractometer with Cu K $\alpha$  radiation ( $\lambda = 0.15418$  nm) at 40 kV and 200 mA in a scanning rate of 5°/min.

The microstructure of the materials was examined by transmission electron microscopy (TEM) on a JEOLJEM-2000EX electron microscopy.



Fig S1. Small angle XRD pattern of as-synthesized SBA-15.



Fig S2. N<sub>2</sub> adsorption/desorption isotherms of as-synthesized SBA-15.



**Fig. S3** TPR profiles of the monometallic Ni/SBA-15, Cu/SBA-15 and bimetallic NiCu/SBA-15 catalysts.



Fig S4. Wide angle XRD patterns before and after reduction.



Fig S5. TEM images of as-synthesized SBA-15.



Fig S6. TEM images of NiCu-50/SBA-15.

| Sample         | D <sub>Pore</sub> (nm) | $V_{Pore}$ (cm <sup>3</sup> g <sup>-1</sup> ) | $S_{BET}(m^2g^{-1})$ |
|----------------|------------------------|-----------------------------------------------|----------------------|
| SBA-15         | 6.5                    | 1.37                                          | 952                  |
| Ni/SBA-15      | 5.7                    | 1.25                                          | 816                  |
| NiCu-10/SBA-15 | 5.6                    | 1.25                                          | 672                  |
| NiCu-30/SBA-15 | 5.6                    | 1.08                                          | 641                  |
| NiCu-50/SBA-15 | 5.6                    | 1.09                                          | 691                  |
| NiCu-80/SBA-15 | 4.3                    | 1.14                                          | 727                  |
| Cu/SBA-15      | 5.6                    | 1.26                                          | 883                  |

 Table S1 Physic properties of as-synthesized catalysts.

# 2. Isolation of Key Intermediates

### 2.1 Isolation of 4-Hydroxy-2-cyclopentenone

4-hydroxy-2-cyclopentenone was synthesized in water without any catalyst.

Typically, a solution of furfuryl alcohol (15.0 g, 0.15 mol) in water (300 mL) was loaded into a 600 mL Parr stainless steel autoclave. After sealed and purged with H<sub>2</sub> for 4 times to exclude air, the autoclave was heated to 160 °C and then purged with 2 MPa of H<sub>2</sub>. After the reaction was completed (8 h), the solvent was removed under reduced pressure and red dark oil was obtained. The crude product was purified by silica gel chromatography using 3:1 *n*-hexane/ethyl acetate and then 1:1 *n*-hexane/ethyl acetate to afford the product, red yellow oil (Yield 52%, 7.78 g). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>;Me<sub>4</sub>Si)  $\delta$  = 7.58 (dd, *J* = 5.6Hz, 2.3Hz, 1H, CH), 6.25 (dd, *J* = 5.6Hz, 0.8Hz, 1H, CH), 5.08 (t, *J* = 5.6Hz, 1H, CH), 2.80 (dd, *J* = 18.5Hz, 6.1Hz, 1H, CH<sub>2</sub>), 2.30 (dd, *J* = 18.5Hz, 2.1Hz, 1H, CH<sub>2</sub>), 2.11 (d, *J* = 6.5Hz, 1H, OH); <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>; Me<sub>4</sub>Si)  $\delta$  = 207.6 (C), 164.1(CH), 134.9(CH), 70.3(CH), 44.3(CH<sub>2</sub>). m/z 98 (M+, 100%), 97 (41),70 (75), 55 (54), 44 (40), 43 (45), 42 (95).

The corresponding <sup>1</sup>H NMR, <sup>13</sup>C NMR and MS are shown in Fig S10 and S13.

### 2.2 Isolation of 2-Cyclopentenone

10.0 g aqueous solution of 4-hydroxy-2-cyclopentenone (10.2 mmol) and NiCu-50/SBA-15 (0.20 g) were loaded into a 60 mL stainless steel autoclave. After sealed and purged with H<sub>2</sub> for 4 times to exclude air, the autoclave was purged with 0.1 MPa of H<sub>2</sub> and then heated to 160 °C. 4 h later, the reactor was cooled and the mixture was centrifuged. Product was extracted by dichloromethane and purified by silica gel chromatography using 3:1 *n*-hexane/ether, 2:1 *n*-hexane/ether and then 1:1 *n*-hexane/ether to afford the product, colorless oil. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; Me<sub>4</sub>Si)  $\delta$  = 7.74 (dt, *J* = 5.6 Hz, 2.7 Hz, 1H, CH), 6.22 (dt, *J* = 4.8 Hz, 2.1 Hz, 1H, CH), 2.71 (dq, *J* = 6.7 Hz, 2.2 Hz, 2H, CH<sub>2</sub>), 2.40-2.33 (m, 2H, CH<sub>2</sub>). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>; Me<sub>4</sub>Si)  $\delta$  = 210.7 (C), 164.9 (CH), 134.7 (CH), 34.2 (CH<sub>2</sub>), 29.1 (CH<sub>2</sub>). m/z 82 (M+, 100%), 54 (29), 53 (30).

The corresponding <sup>1</sup>H NMR. <sup>13</sup>C NMR and MS, spectra are shown in Fig S12 and S14.

# 3. Optimization of Reaction Conditions



Scheme S1 Conversion of furfural in water.

| Entry Catalysts | Catalyzata                        | Conv. (%) | Seletivity of products (%) |     |     |     |     |
|-----------------|-----------------------------------|-----------|----------------------------|-----|-----|-----|-----|
|                 | Catalysis                         |           | 1                          | 2   | 3   | 4   | 5   |
| 1               | Ni/SiO <sub>2</sub>               | 29        | 35                         | n.d | n.d | n.d | n.d |
| 2               | Ni/Al <sub>2</sub> O <sub>3</sub> | >99       | 3                          | 17  | n.d | n.d | 44  |
| 3               | Ni/AC                             | >99       | 2                          | 5   | 4   | n.d | 18  |
| 4               | Ni/ZSM-5                          | 52        | 29                         | n.d | n.d | n.d | 3   |
| 5               | Ni/SBA-15                         | 42        | 36                         | n.d | 1   | 4   | n.d |

Table S2 Conversion of furfural over nickel-based catalyst under H<sub>2</sub> atmosphere.<sup>a</sup>

<sup>*a*</sup> Reaction conditions: 10 g 5 wt% furfural aqueous solution, 0.2 g catalyst (10 wt% nickel), 160 °C, 2 MPa  $H_2$ , 4 h. Results are based on carbon balance. *n.d*: not detected by GC.

| Entry          | A dditiyos                       | nH b | Conv. (%) | Distribution of products (%) |     |     |     |     |
|----------------|----------------------------------|------|-----------|------------------------------|-----|-----|-----|-----|
| Liiuy          | Additives                        | pm   |           | 1                            | 2   | 3   | 4   | 5   |
| 1              | Na <sub>2</sub> CO <sub>3</sub>  | 11.0 | >99       | n.d                          | n.d | n.d | 40  | 36  |
| 2              | Na <sub>2</sub> HPO <sub>4</sub> | 9.2  | >99       | 2                            | 1   | n.d | 36  | 28  |
| 3              | none                             | 7.0  | >99       | 62                           | 3   | 17  | n.d | n.d |
| 4              | NaH <sub>2</sub> PO <sub>4</sub> | 4.8  | >99       | 40                           | 1   | 6   | n.d | n.d |
| 5              | AcOH                             | 3.3  | 94        | 40                           | 2   | 3   | n.d | n.d |
| 6 <sup>c</sup> | $H_3PO_4$                        | 1.4  | -         | n.d                          | n.d | n.d | 40  | 36  |

Table S3 Effect of additives on the hydrogenation of furfural.<sup>a</sup>

<sup>a</sup> Reaction conditions: 10 g 5 wt% furfural aqueous solution, 0.2 g NiCu-50/SBA-15, 0.1 mmol additive,

160 °C, 4 MPa H<sub>2</sub>, 4 h. AcOH: acetic acid. Results were based on carbon balance. *n.d*: not detected by GC.

<sup>b</sup> pH values were determined at room temperature. <sup>c</sup> 1 mmol H<sub>3</sub>PO<sub>4</sub>, black solid was observed.



Fig S7. Hydrogenation of furfural over NiCu-50/SBA-15 in different solvents.



**Fig S8.** Hydrogenation of furfural over NiCu-50/SBA-15 at different reaction temperature.

# 4. Control Experiments

| Table S4 Control experiments under | different reaction conditions. <sup>a</sup> |
|------------------------------------|---------------------------------------------|
|------------------------------------|---------------------------------------------|

| Entry           | Substrates | Catalyst | Atmosphere     | Yield of CPO+CPL (%) | Yield of HCP (%) |
|-----------------|------------|----------|----------------|----------------------|------------------|
| 1               | furfural   | Y        | H <sub>2</sub> | 65                   | n.d              |
| 2               | furfural   | Y        | $N_2$          | n.d                  | n.d              |
| 3               | furfural   | Ν        | $H_2$          | n.d                  | n.d              |
| 4               | furfural   | Ν        | $N_2$          | n.d                  | n.d              |
| 5               | FA         | Y        | $H_2$          | 36                   | n.d              |
| 6               | FA         | Y        | $N_2$          | n.d                  | 60               |
| 7               | FA         | Ν        | $H_2$          | n.d                  | 52               |
| 8               | FA         | Ν        | $N_2$          | n.d                  | 52               |
| $9^b$           | FA         | Ν        | $N_2$          | n.d                  | n.d              |
| $10^{b}$        | furfural   | Y        | $H_2$          | n.d                  | n.d              |
| 11 <sup>c</sup> | FA         | Ν        | $N_2$          | trace                | n.d              |
| $12^c$          | furfural   | Y        | $H_2$          | n.d                  | n.d              |
| 13              | THFA       | Y        | $H_2$          | n.d.                 | n.d.             |
| 14              | MF         | Y        | $H_2$          | n.d.                 | n.d.             |

<sup>*a*</sup> Reaction conditions: 10 g 5 wt% aqueous solution, 0.2 g NiCu-50/SBA-15, 160 °C, 4 h, 0.1 MPa N<sub>2</sub> or 4 MPa H<sub>2</sub>. FA: furfuryl alcohol. CPO: cyclopentanone. HCP: 4-hydroxy-2cyclopentenone. THFA: tetrahydrofurfuryl alcohol. MF: 2-methyl furan. Y: In the presence of NiCu-15/SBA-15. N: Without catalyst. *n.d*: not detected by GC. <sup>*b*</sup> in 1,4-dioxane. <sup>*c*</sup> at 80 °C.

| es. <sup>a</sup> |
|------------------|
| es.'             |

| Entry           | Additives <sup>b</sup> | $C_{ontrol}(9/)$ | Selectivi | Selectivity of products (%) |   |    |  |
|-----------------|------------------------|------------------|-----------|-----------------------------|---|----|--|
| Entry Additives |                        | Conv. (76)       | 1         | 2                           | 3 | 5  |  |
| 1               |                        | >99              | n.d       | 20                          | 1 | 13 |  |
| 2               | O<br>V                 | >99              | n.d       | 24                          | 4 | 17 |  |
| 3               | °<br>,<br>,<br>,       | >99              | n.d       | 8                           | 3 | 17 |  |
| 4               | o<br>L                 | >99              | n.d       | 22                          | 3 | 14 |  |

<sup>*a*</sup> Reaction conditions: 10 g 5 wt% furfural aqueous solution, 0.2 g NiCu-50/SBA-15, 160 °C, 4 MPa H<sub>2</sub>, 4 h. *n.d*: not detected by GC. <sup>*b*</sup> The amount of ketone was equal to that of furfuryl alcohol.

## **Kinetic experiments**

Kinetic experiments were performed in a Parr stainless steel autoclave. For a typical procedure, a solution of furfuryl alcohol (2.5 g, 0.025 mol) in water (50 mL, H<sub>2</sub>O or D<sub>2</sub>O) was put in a 600 mL Parr stainless steel autoclave. The reactor was sealed and purged with H<sub>2</sub> for 4 times to exclude air, and then it was heated to 120  $^{\circ}$ C. Samples were taken every six minutes and analyzed by GC based on internal standard method.

## 5. Preparation of Cycloalkanes

### 5.1 Hydrodeoxygenation of Cyclopentanone into Cyclopentane



Hydrogenation of cyclopentanone was carried out in a 60 mL stainless steel autoclave equipped with a magnetic stirrer, a pressure gauge and automatic temperature control apparatus. A typical procedure was as follows: the reactor was initially loaded with cyclopentanone (10.0 g, 0.2 mol) and Ru/ZSM-5 (3.0 g) catalyst. After the reactor was sealed and purged with H<sub>2</sub> for 4 times to exclude air, the reactor was heated to 180  $^{\circ}$ C and purged with 4 MPa of H<sub>2</sub>. 36 h later, the reactor was cooled down to room temperature. The conversion and selectivity of cyclopentane were determined by area normalization method (conversion: 89%, selectivity: 96%).

#### **5.2 Self-condensation of Cyclopentanone**



A typical procedure was as follows: Cyclopentanone (1100 mL) and sodium hydroxide aqueous solution (110 mL, 10 wt %) was loaded in reactor, and stirred for 10 h under reflux. Then the mixture was cooled and allowed to separate in two layers. The organic phase was analyzed (conversion: 67%, selectivity: 97%), then distilled under reduced pressure to offer 2-cyclopentylidenecyclopentanone (554.9 g, yield 60%).

#### 5.3 Production of Bicyclopentyl via Catalytic Hydrogenation



Hydrogenation of 2-cyclopentylidenecyclopentanone was carried out in a 600 mL batch autoclave reactor (Parr Instrument Co.) equipped with an external temperature and

stirring controller. A typical procedure was as follows: the reactor was initially loaded with 2-cyclopentylidenecyclopentanone (30.0 g, 0.2 mol) and Ru/ZSM-5 (3.0 g) catalyst. After the reactor was sealed and purged with H<sub>2</sub> for 4 times to exclude air, the reactor was heated to 180 °C and purged with 4 MPa of H<sub>2</sub>. 36 h later, the reactor was cooled down to room temperature. The mixture was filtrated and dried by anhydrous sodium sulfate to afford the product (colorless oil, 25.2 g, yield 91%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 1.72$  (s, 4H), 1.59-1.49 (m, 10H), 1.12 (s, 4H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 46.5$ , 32.0, 25.5. m/z 138 (M+, 13%), 96 (67), 95 (65), 82 (68), 81 (47), 69 (43), 68 (98), 67 (100) The corresponding MS, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are shown in Fig S15 and S11.



Fig S9. Total schematic description for the production of cycloalkanes.

| Table S6 | Chemical | and physical | properties o | of bicyclopentyl. |
|----------|----------|--------------|--------------|-------------------|
|----------|----------|--------------|--------------|-------------------|

| Property                | Value                             | Reference            |
|-------------------------|-----------------------------------|----------------------|
| Chemical Formula        | $C_{10}H_{18}$                    | -                    |
| Molecular weight        | 138.2 g/mol                       | Calculated           |
| Freezing Point          | -35 °C (1 atm, air)               | [S1]                 |
| Boiling Point           | 190 °C                            | [\$2,\$4]            |
| Density                 | 0.8664 g/cm <sup>-3</sup> (30 °C) | [85]                 |
|                         | 4.22 cs (-34 °C)                  |                      |
| Viscosity               | 1.35 cs (38 °C)                   | [S3]                 |
|                         | 0.72 cs (99 °C)                   |                      |
| Aniline point           | 36.5 °C                           | [S4]                 |
| Thermal Decomp temp     | 399 °C                            | [S3]                 |
| Luminometer number      | 52.2                              | [S3]                 |
|                         | 18297 b.t.u/lb                    | [\$2]                |
| Nat Haat of Compustion  | 132864 b.t.u./gal                 | [35]                 |
| Net fleat of Combustion | 42.530 MJ/kg                      | Calculated from [S2] |
|                         | 37.029 MJ/L                       |                      |

References:

- [S1] A. J. Streiff, A. R. Hulme, P. A. Cowie, N. C. Krouskop, F. D. Rossini, Anal. Chem., 1955, 27, 411-415.
- [S2] A. R. Lepley, Anal. Chem., 1962, 34, 322-325.
- [S3] L. I. B. M. H. Gollis, B. J. Gudzinowicz, S. D. Koch, J. O. Smith, R. J. Wineman, J. Chem. Eng. Data, 1962, 7, 311-316.
- [S4] G. E. Goheen, J. Am. Chem. Soc., 1941, 63, 744-749.
- [S5] A. Weissler, J. Am. Chem. Soc., 1949, 71, 419-421.



6. NMR, MS and GC Traces

Fig S10. <sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-hydroxy-2-cyclopentenone.





`

**Fig S12.** <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2-cyclopentenone.



m/z 98 (M+, 100%), 97 (41), 70 (75), 55 (54), 44 (40), 43 (45), 42 (95)

Fig S13. Mass spectrum of 4-hydroxy-2-cyclopentenone.

m/z 82 (M+, 100%), 54 (29), 53 (30)



Fig S14. Mass spectrum of 2-cyclopentenone.

m/z 138 (M+, 13%), 96 (67), 95 (65), 82 (68), 81 (47), 69 (43), 68 (98), 67 (100)



Fig S15. Mass spectrum of bicyclopentyl.



**Fig S16.** MS traces of cyclopentanone obtained in ordinary water and  $H_2^{18}O$ .



m/z 98 (M+, 100%), 97 (32), 70 (73), 55 (51), 44 (42), 43 (46), 42 (80)



m/z 102 (M+, 100%), 100 (28), 98 (2), 72 (80), 57 (68), 45 (54), 44 (59), 42 (62)



**Fig S17.** MS traces of 4-hydroxy-2-cyclopentenone obtained in ordinary water and  $H_2^{18}O$ .

m/z 102 (M+, 100%), 100 (90), 98 (5),72 (89), 57 (77), 45 (54), 44 (91), 42 (96)



Fig S18. The oxygen exchange between 4-hydroxy-2-cyclopentenone and water (160  $^{\circ}$ C, 4 h, no catalyst, H<sub>2</sub> atmosphere).

m/z 86 (M+, 68%), 84 (35), 57 (100), 55 (71), 41 (49)



Fig S19. The oxygen exchange between cyclopentanone and water (160  $^{\circ}$ C, 4 h, no catalyst, H<sub>2</sub> atmosphere).

m/z 68 (M+, 100%), 39 (76)





m/z 82 (M+, 100%), 81 (61), 53 (49)



Fig S21. Mass spectrum of 2-methyltetrahydrofuran.

m/z 86 (M+, 8%), 57 (100)



Fig S22. Mass spectrum of cyclopentanol.







m/z 98 (M+, 100%), 97 (53), 96 (49), 95 (54), 81 (49), 69 (29), 53 (33), 41 (31)



Fig S24. Mass spectrum of furfuryl alcohol.

m/z 102 (M+, 0%), 71 (100), 43 (43)



Fig S25. Mass spectrum of tetrahydrofurfuryl alcohol.

m/z 132 (M+, 0%), 101 (94), 83 (25), 57 (100), 55 (34)



Fig S26. Mass spectrum of (tetrahydrofuran-2,5-diyl)dimethanol.

m/z 98 (M+, 100%), 83 (24), 70 (35), 69 (57), 56 (27), 55 (83)



Fig S27. Mass spectrum of 2-methylcyclopentanone.

### m/z 112 (M+, 86%), 111 (29), 97(40), 95 (100)



Fig S28. Mass spectrum of (5-methylfuran-2-yl)methanol.



Fig S29. GC trace of furfural hydrogenation (Fig 4, line a, left).



Fig S30. GC trace of furfural hydrogenation at 80 °C (Fig 4, line *b*, left).



Fig S31. GC trace of furfural hydrogenation with Na<sub>2</sub>CO<sub>3</sub> as additive (Fig 4, line *c*, left).



Fig S32. GC trace of furfural hydrogenation in 1,4-dioxane (Fig 4, line *d*, left).



Fig S33. GC trace of furfural hydrogenation in 1,4-dioxane / water (Fig 4, line e, left).



Fig S34. GC trace of furfuryl alcohol conversion in water (Fig 4, line *a* right).



Fig S35. GC trace of furfuryl alcohol conversion at 80 °C (Fig 4, line *b*, right).



**Fig S36**. GC trace of furfuryl alcohol conversion using Na<sub>2</sub>CO<sub>3</sub> as additive (Fig 4, line *c*, right).



Fig S37. GC trace of furfuryl alcohol conversion in 1,4-dioxane (Fig 4, line d, right).



**Fig S38**. GC trace of furfuryl alcohol conversion in 1,4-dioxane / water (Fig 4, line *e*, right).



Fig S39. The photo of the black solid observed (Table 1, entry 6).