Supporting Information

N-terminal PEGylated Cellulase: A High Stability Enzyme in 1-butyl-3-methylimidazolium chloride

Lu Li, Juan Xie, Shitao Yu,* Zhongliang Su, Shiwei Liu, Fusheng Liu, Congxia Xie, Baoquan Zhang and Chenggang Zhang

College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 (PR China)

Preparation of Cell-ALD

Scheme S1 Reaction of cellulase modification with mPEG-ALD

Preparation of Cell-SPA 5k

mPEG
$$O-N$$
 + $_2HN-R$ \longrightarrow mPEG $HN-R$

Scheme S2 Reaction of cellulase modification with mPEG-SPA

Determination of conversion of cellulose

The conversion of cellulose was defined as follows:

Conversion of cellulose(%)=
$$\frac{\text{Concentration of reducing sugars } \text{mg/mL}}{\text{Concentration of cellulose } \text{mg/mL}} \times 100\% \times 0.9$$

Hydrolysis of MCC by Cell-ALD 5k and Cellulase in aqueous buffer system

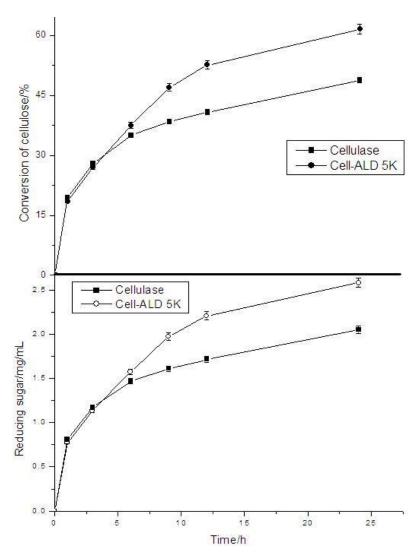


Fig.S1 Hydrolysis of MCC by Cell-ALD 5k and Cellulase in aqueous buffer system

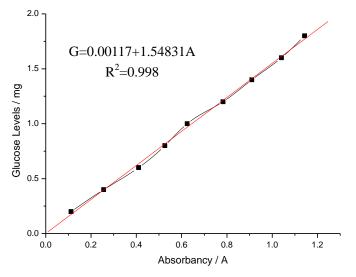


Fig. S2 The absorbance at 540 nm of D-glucose standard solutions in DNS analysis.